
Opetopes, rewriting, and koszulity

Cédric Ho Thanh1

Directed by Pierre-Louis Curien2 and Samuel Mimram3

November 6, 2017
1INSPIRE 2017 Fellow
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No 665850

2PPS, IRIF, Paris Diderot University

3LIX, École Polytechnique

1



Opetopes

Geometric shapes (akin to simplices) expressing pasting diagrams.
A (n + 1)-opetope is a way of pasting n-opetopes.

Examples
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Higher category theory

Opetopes were originally used as shapes of cells for weak
n-categories (n ≤ ω) [BD98], [Che04].

Universal cells define an
unbiased composition:

If the pasting diagram (α, β, γ) have a universal filler θ, then its
target δ is the weak composite.
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Rewriting

• Higher-dimensional rewriting is usually based on polygraphs
(Burroni, Street, Lafont, Guiraud, Malbos, Mimram, ...).

• Opetopes appear sufficiently restricted to have nice properties,
while general enough to encompass most abstract concepts.

• Goal: study opetopes from the point of view of
higher-dimensional rewriting theory.

Theorem

• The category of n-polygraphs (n > 2) is not a presheaf
category [Che12].

• The category of opetopic sets is equivalent to the category of
“many-to-one” polygraphs. (The “many-to-many” aspect of
general polygraphs can cause problems for checking
confluence)
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Koszul duality

• Originally stated for associative algebras.

• Lifted to the operadic context [GK94].
• We want to it lift further to the level of opetopes.
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Koszulity and rewriting

• Strong links between koszulity and convergence (Berger,
Hoffbeck, Dotsenko, ...).

• Homological finiteness conditions for rewriting systems (Squier
theory [SOK94]). Koszulity ⇝ easy to compute homology.

• Operads encode algebras, opetopes encode operads, opetopes
encode opetopes. Opetopic koszulity would be in a sense
“most general”.
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To summarize

• Study higher rewriting with opetopes.
• Study rewriting of opetopes.
• Develop homological and homotopical machinery.
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Thank you for your attention
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