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Finite Makov chains



Finite Markov chains

A finite Markov chain models the discrete-time evolution of a probabilistic process
with finitely many states.
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It is made of

1. a set of states X = {start,try,lost,delivered};
2. a transition kernel γ, e.g. γ(try,delivered) = 9

10 . More precisely, γ is a map
XÐ→∆X, where ∆X is the set of all probability distributions over X.
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Sure reachability
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It seems obvious that starting from start (or indeed, any state), the desirable state
delivered will almost surely be reached.

1. The probability to get from start to delivered is > 0;
2. we can’t get stuck anywhere.

We can even say more: every state is reachable from every other.
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Sure reachability

A chain where every state is reachable from every other is called strongly connected.
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Sure reachability

Theorem (sure reachability)
If (X, γ) is a strongly connected finite Markov chain and x ∈ X is a state, then the
probability of eventually reaching x (starting from anywhere) is 1:

X ⊧ P(◊ x) = 1.
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Recurrence
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But that’s not all. Not only do we almost surely reach delivered, but we almost
surely reach it infinitely often.
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Recurrence

Theorem (finite reachability)
If (X, γ) is a strongly connected finite Markov chain and x ∈ X is a state, then the
probability of eventually reaching x (starting from anywhere) is 1:

X ⊧ P(◊ x) = 1.
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Recurrence

Theorem (finite recurrence)
If (X, γ) is a strongly connected finite Markov chain and x ∈ X is a state, then the
probability of reaching x infinitely often (starting from anywhere) is 1:

X ⊧ P(◻◊ x) = 1.
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Recurrence

Key point
If a process evolves in a finite and strongly connected Markov chain, and A is a set
of “good states”, then the process is garanteed (in a probabilistic sense) to reach A
infinitely often.
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In our previous example, A = {delivered}.
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Recurrence

What if our probabilistic process has infinitely many states?

u

x1 x2 x3 . . .

1 1 − p1

p1

1 − p2

p2

1 − p3

p3

Today’s objective
Generalize the recurrence theorem to infinite Markov chains.
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Infinite Makov chains



Back to finite Markov chains for just a second

We defined a finite Markov chain as a finite set of states X and a transition kernel
γ ∶ X2 Ð→ [0,1].

More formally,

Definition (Finite Markov chain)

1. X = (X,Σ) is a finite measurable space;
2. γ is a measurable map XÐ→∆X, where ∆X is the space of all probability

distributions over X.

(usually, X is a discrete measurable space, so that every singleton {x} is a measurable
event)
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Infinite Makov chains (the wrong way)

The generalization seems obvious:
Definition
A (not necessarily finite) Markov chain is the datum of

1. a (not necessarily finite) measurable space X = (X,Σ), called the state space;
2. a measurable map XÐ→∆X, called the transition kernel.

Example
X = R, γ(x) = N(x,1).
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Infinite Makov chains (the wrong way)

To state a recurrence theorem, we also need a notion of reachability:
Definition
We say that a state y ∈ X is reachable from x ∈ X if either x = y,

or γ(x, y) > 0, or
there exists a path u1, . . . ,un ∈ X such that

γ(x,u1) × γ(u1,u2) ×⋯ × γ(un, y) > 0.

But way a minute, in our previous example where X = R and γ(x) = N(x,1), we have
γ(x, y) = 0 for all x, y ∈ X. No state is reachable from x! (except x itself)
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Infinite Markov chains (the right way)

Solution
Instead of focusing on wether or not γ(x, y) > 0, we should instead ask if γ(x,U) > 0
for any “arbitrary small set” U ∋ y.

Of course we can’t just take U to be a measurable set since in most cases {y} is
measurable...

So we turn to topology.
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Infinite Markov chains

Nugget of wisdom 1

Topology + probability theory = Polish spaces

A Polish space is a topological space that is separable (it admits a dense countable
subset) and completely metrizable (its topology is generated by a metric under which
every Cauchy sequence converges).

Examples
Rn with the Euclidean topology. The Hilbert cube [0,1]∞. Any countable discrete
space.

13
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Infinite Markov chains

Definition
A (not necessarily finite) Markov chain is the datum of

1. a Polish space X, called the state space;
2. a continuous map XÐ→∆X, called the transition kernel.

In other words, a Markov chain is a ∆-coalgebra.

Here, ∆ is the Giry monad, which maps X to the space of probability distributions
over the Borel algebra (X,B(X)), with the so-called “weak topology”.
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Objective

We want to generalize our finite recurrence theorem:
Theorem (finite recurrence)
If (X, γ) is a strongly connected finite Markov chain and E ⊆ X a non-empty
measurable set, then reaching E infinitely often (starting from anywhere) is almost
certain, i.e.

X ⊧ P(◻◊E) = 1.
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non-empty open set, then reaching U infinitely often (starting from anywhere) is
almost certain, i.e.

X ⊧ P(◻◊U) = 1
:::::::::::::::

.

So we need to answer the following questions:

1. What is the P(◻◊U) at a state x ∈ X? i.e. how to define the probability to follow
a random walk that satisfies ◻◊U?

2. What does “strongly connected” means?
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Path spaces



Reachability

As promised, the definition of topological Markov chain fixes the reachability problem
we encountered with the naive definition:

Definition
We say that a state y is reachable in one step from x if for all U ∋ y open,
γ(x,U) > 0.

In other words, y ∈ suppγ(x), where the support of a distribution µ ∈∆X is

suppµ = {z ∈ X ∣ ∀U ∋ z open, µ(U) > 0} .
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Path spaces

The notion of reachability (in one or more steps) is encapsulated in the path spaces of
X.
Definition
The space X⊙n ⊆ Xn of random walks (or paths) of length n in X is defined as:

1. X⊙0 ∶= ∗; X⊙1 ∶= X;
2. if 2 ≤ n <∞,

X⊙n = lim
⎛
⎜⎜⎜
⎝

X⊙2 X⊙2 ⋯ X⊙2

X X X
p2 p2p1 p2p1 p1

⎞
⎟⎟⎟
⎠

3. if n =∞,

X⊙∞ = lim (⋯Ð→ X⊙n Ð→ X⊙(n−1) Ð→ ⋯Ð→ X⊙2 Ð→ X)

18
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Path spaces

Observation

1. X⊙n ⊆ Xn is the subspace of all tuples (x1, . . . , xn) such that xi+1 is reachable in
one step from xi;

2. X⊙∞ ⊆ X∞ is the subspace of all sequences (xi)i∈N such that xi+1 is reachable in
one step from xi;
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Path spaces

Proposition
The path space X⊙n is Polish, for n ≤∞.

Let’s sketch the proof. Since Pol has countable limits, it is enough to show that X⊙2 is
a Polish space.
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Path spaces

Recall that X⊙2 ⊆ X2 is the subspace of all pairs (x, y) such that y ∈ suppγ(x).

The
idea is to show that X⊙2 is a Gδ-set (countable intersection of open sets).

Observation
y ∈ suppγ(x) if and only if ∀U open, y ∈ U Ô⇒ γ(x,U) > 0. In other words, ∀U open

gU(x, y) ∶= 1 − χU(y) − γ(x,U) > 0

which gives
X⊙2 =⋂

U
g−1

U (0,+∞)

where U ranges over some countable basis of X.

Problem
gU ∶ X2 Ð→ R is not continuous in general.
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Path space

The solution is to replace

gU(x, y) = 1 − χU(y) − γ(x,U)

with a continuous alternative with similar properties.

Let Q ⊆ X be a dense subset and Bq,n ∶= B(q,1/n) for some compatible metric on X.
Choose some continuous map bq,n ∶ XÐ→ [0,1] that is 1 on cl(Bq,2n) and 0 on Bq,n.
Let

g̃q,n(x, y) ∶= 1 − bq,n(y) +∫ bq,n dγ(x)

Using some topological arguments, we get

X⊙2 =⋂
q,n

g̃−1
q,n(0,+∞).
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Path spaces

Proposition
The Borel algebra of X⊙n is generated by sets of the form

E1 ⊙⋯⊙ En ∶= X⊙n ∩ (E1 ×⋯ × En)

called sequence sets, where E1, . . . ,En ∈ B(X).

In plain words, E1 ⊙⋯⊙ En is the set of all random walks of length n that start in E1,
then go in E2, then E3, then ... then En.
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Path spaces

Proposition
The Borel algebra of X⊙∞ is generated by sets of the form

Cyl(E1, . . . ,En) ∶= X⊙∞ ∩ (E1 ×⋯ × En ×X∞)

called cylinder sets, where E1, . . . ,En ∈ B(X).

In plain words, Cyl(E1, . . . ,En) is the set of all random walks that start in E1, then go
in E2, then E3, then ... then En, and then are free to go wherever they want.

24



Path spaces

Proposition
The Borel algebra of X⊙∞ is generated by sets of the form

Cyl(E1, . . . ,En) ∶= X⊙∞ ∩ (E1 ×⋯ × En ×X∞)

called cylinder sets, where E1, . . . ,En ∈ B(X).

In plain words, Cyl(E1, . . . ,En) is the set of all random walks that start in E1, then go
in E2, then E3, then ... then En, and then are free to go wherever they want.

24



Path spaces

Proposition
The Borel algebra of X⊙∞ is generated by sets of the form

Cyl(E1, . . . ,En) ∶= X⊙∞ ∩ (E1 ×⋯ × En ×X∞)

called cylinder sets, where E1, . . . ,En ∈ B(X).

In plain words, Cyl(E1, . . . ,En) is the set of all random walks that start in E1, then go
in E2, then E3, then ... then En, and then are free to go wherever they want.

24



Extension of probability measures



Motivation

Thanks to X⊙n, we have a good notion of reachability and paths, a.k.a. random walks.

What is the probability to follow a given random walk (x1, x2, . . .)? Still 0 in most
cases, since again, γ(x, y) = 0 (think of N(0,1)).

But what is the probability to follow a random walk within a subset E ⊆ X⊙∞?

Objective
We need to lift an initial distribution µ on X to a distribution ext∞ µ on X⊙∞.
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Extension of probabilities

Given a probability distribution µ on X (that acts as an initial distribution), we define a
distribution ext∞ µ on X⊙∞ as follows: the probability

ext∞ µ (Cyl(E1, . . . ,En))

to walk from E1 to E2 to ... to En, is

the probability to start in E1, which is determined by the initial distribution µ,
weighted by the probability of walking from E1 to E2, weighted by the probability of
walking from E2 to E3, ..., weighted by the probability of walking from En−1 to En.
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Extension of probabilities

So to recap

1. ext∞ µ(V) is the probability to follow a random walk in V, with µ as initial
distribution;

2. ext∞ δx(V) is the probability to follow a random walk in V starting from x.

But we are not interested in any V, we would like

◊U, ◻◊U

where U ⊆ X is open.
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Logic



Objective

We develop two logics:

1. Linear temporal logic (LTL) to express properties about random walks;

2. Probabilistic computational tree logic (PCTL) to express properties about
states.

28



Objective

We develop two logics:

1. Linear temporal logic (LTL) to express properties about random walks;
2. Probabilistic computational tree logic (PCTL) to express properties about

states.

28



Linear Temporal Logic (LTL)

LTL is defined as

ϕ ::= ⊺ | ¬ϕ | ϕ ∧ ϕ | E | ◯ϕ | ϕU≤n ϕ

where E ∈ B(X) and n ≤∞.

The semantic of an LTL formula ϕ is a measurable set
⟦ϕ⟧ ⊆ X⊙∞:

1. (propositional connectives) unsurprisingly, ⟦⊺⟧ ∶= X⊙∞; ⟦¬ϕ⟧ ∶= X⊙∞ − ⟦ϕ⟧,
⟦ϕ ∧ ψ⟧ ∶= ⟦ϕ⟧ ∩ ⟦ψ⟧;

2. (atomic predicates) ⟦E⟧ ∶= Cyl(E), the set of random walks that start in E;
3. (“next”) ⟦◯ϕ⟧ ∶= X⊙∞ ∩ (X × ⟦ϕ⟧), the set of random walks that satisfy ϕ after

the first step (and onwards);
4. (“until”) ⟦ϕU≤n ψ⟧ ∶= ⋃n

i=0 (⟦◯iψ⟧ ∩⋂i−1
j=0 ⟦◯j ϕ⟧).
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The semantic of LTL

The two modalities we’re really interested in are

1. (“eventually”) ◊ϕ ∶= ⊺U≤∞ ϕ:

⟦◊ϕ⟧ =
∞
⋃
i=0
⟦◯i ϕ⟧

“we follow a random walk in that satisfies ϕ now,

or in 1 step, or in 2, or in 3, ...”;

2. (“always”) ◻ ∶= ¬◊¬ϕ:
⟦◻ϕ⟧ =

∞
⋂
i=0
⟦◯i ϕ⟧

“we follow a random walk in that satisfies ϕ now, and in 1 step, and in 2, and in
3, ...”.
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The semantic of LTL

Observation
The LTL formula we’re really interested in is ◻◊U:

⟦◻◊U⟧ = {(xi)i∈N ∈ X⊙∞ ∣ xi ∈ U for infinitely many i ∈ N} .
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Recurrence theorem

Theorem??
If (X, γ) is a

:::::::
strongly

::::::::::
connected //////finite topological Markov chain and U ⊆ X a

non-empty open set, then reaching U infinitely often (starting from anywhere) is
almost certain, i.e.

X ⊧ P(◻◊U) = 1
:::::::::::::::

.
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Recurrence theorem

Theorem??
If (X, γ) is a

:::::::
strongly

::::::::::
connected //////finite topological Markov chain and U ⊆ X a

non-empty open set, then reaching U infinitely often (starting from anywhere) is
almost certain, i.e.

X ⊧ P(
::::::

◻◊U) = 1
::::

.

◻◊U = “it is always true that eventually, we’ll reach U”
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Probabilistic computational tree logic (PCTL)

Instead of expressing properties about random walks (like LTL), PCTL expresses
properties about states:

Φ ::= ⊺ | ¬Φ | Φ ∧Φ | E | P(ϕ) & p

where E ∈ B(X), ϕ is an LTL formula, & ∈ {>,≥,≤,<,=,≠}, and p ∈ [0,1]. The semantic
of a PCTL formula Φ is a measurable set ⟦Φ⟧ ⊆ X:

1. (propositional connectives) ⟦⊺⟧ ∶= X; ⟦¬Φ⟧ ∶= X − ⟦Φ⟧, ⟦Φ ∧Ψ⟧ ∶= ⟦Φ⟧ ∩ ⟦Ψ⟧;
2. (atomic predicates) ⟦E⟧ ∶= E;
3. P(ϕ) ≥ p means that “the probability to start walking in a way that satisfies ϕ is
≥ p”

⟦P(ϕ) ≥ p⟧ ∶= {x ∈ X ∣ ext∞ δx (⟦ϕ⟧) ≥ p}
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The semantic of PCTL

Quick dissection:

⟦P(ϕ) ≥ p⟧ ∶= {x ∈ X ∣ ext∞ δx (⟦ϕ⟧) ≥ p}

1. δx is a probability distribution on X, called the Dirac distribution of x: δx(E) = 1
if x ∈ E, and 0 otherwise; it expresses the idea that “we’re at state x”;

2. the distribution δx on X is extended to a distribution ext∞ δx on X⊙∞; it expresses
the idea that “we’re starting a random walk at x”;

3. ext∞ δx (⟦ϕ⟧) is the probability to start a random walk at x that satisfies ϕ;
4. ⟦P(ϕ) ≥ p⟧ is the set of states x such that starting from x, the probability to

follow a random walk that satisfies ϕ is ≥ p.
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Recurrence theorem

Theorem??
If (X, γ) is a

:::::::
strongly

::::::::::
connected //////finite topological Markov chain and U ⊆ X a

non-empty open set, then reaching U infinitely often (starting from anywhere) is
almost certain, i.e.

X ⊧ P(
::::::

◻◊U) = 1
::::
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Recurrence theorem

Theorem??
If (X, γ) is a

:::::::
strongly

::::::::::
connected //////finite topological Markov chain and U ⊆ X a

non-empty open set, then reaching U infinitely often (starting from anywhere) is
almost certain, i.e.

X ⊧ P(◻◊U) = 1,

i.e. X = ⟦P(◻◊U) = 1⟧
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The recurrence theorem(s)



Recurrence theorem: first attempt

Theorem??
If (X, γ) is a

:::::::
strongly

::::::::::
connected //////finite topological Markov chain and U ⊆ X a

non-empty open set, then reaching U infinitely often (starting from anywhere) is
almost certain, i.e.

X ⊧ P(◻◊U) = 1.

Counterexample

x0 x1 x2 . . .1 1 1 P(◻◊ x0) = 0 everywhere...

So it seems finiteness, or
:::::::::
smallness, is important to prevent random walks from

straying forever.
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Compact Markov chains

Nugget of wisdom 2

Topology + “smallness” = compactness

We say that a Markov chain (X, γ) is compact if X is a compact topological space.
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Recurrence theorem: second attempt

Theorem??
If (X, γ) is a

:::::::
strongly

::::::::::
connected //////finite topological Markov chain and U ⊆ X a

non-empty open set, then reaching U infinitely often (starting from anywhere) is
almost certain, i.e.

X ⊧ P(◻◊U) = 1.

Counterexample

x0 x1
1

1 P(◻◊ x0) = 0 everywhere...

But x0 was not reachable from everywhere in the first place, so this counterexample
seems a bit unfair... After all, P(◻◊ x1) = 1 everywhere.
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Recurrence theorem: second attempt

Theorem??
If (X, γ) is a

:::::::
strongly

::::::::::
connected compact topological Markov chain and U ⊆ X a

non-empty open set, then reaching U infinitely often (starting from anywhere) is
almost certain, i.e.

X ⊧ P(◻◊U) = 1.

Counterexample

x0 x1
1

1 P(◻◊ x0) = 0 everywhere...

But x0 was not reachable from everywhere in the first place, so this counterexample
seems a bit unfair... After all, P(◻◊ x1) = 1 everywhere.
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But x0 was not reachable from everywhere in the first place, so this counterexample
seems a bit unfair... After all, P(◻◊ x1) = 1 everywhere.
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Recurrence theorem: weak version
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Recurrence theorem: weak version

Theorem??
Let (X, γ) be a compact topological Markov chain and U ⊆ X a
non-empty open set. If U is reachable from everywhere with probability > 0, i.e.
X ⊧ P(◊U) > 0, then U is almost certainly reached infinitely often from everywhere,
i.e.

X ⊧ P(◻◊U) = 1.
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Recurrence theorem: weak version

Theorem (weak recurrence) ✓
Let (X, γ) be a compact topological Markov chain and U ⊆ X a
non-empty open set. If U is reachable from everywhere with probability > 0, i.e.
X ⊧ P(◊U) > 0, then U is almost certainly reached infinitely often from everywhere,
i.e.

X ⊧ P(◻◊U) = 1.

39



Recurrence theorem: weak version

Theorem (weak recurrence) ✓
Let (X, γ) be a compact topological Markov chain and U ⊆ X a

open set. If U is reachable from everywhere with probability > 0, i.e.
X ⊧ P(◊U) > 0, then U is almost certainly reached infinitely often from everywhere,
i.e.

X ⊧ P(◻◊U) = 1.

39



Strong connectedness?

What about “strong connectedness”?
Theorem??
Let (X, γ) be a

:::::::
strongly

::::::::::
connected compact topological Markov chain and U ⊆ X an

open set. If U is reachable from everywhere with probability > 0, i.e. X ⊧ P(◊U) > 0,
then U is almost certainly reached infinitely often from everywhere, i.e.

X ⊧ P(◻◊U) = 1.

Recall that “strong connectedness” means (in the finite discrete case): every state is
reachable from every other.
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Strong connectedness?

Key observation
If (X, γ) is a (finite and discrete) strongly connected Markov chain, i.e. if every state
is reachable from every other, then surely there cannot exist a proper subchain
(Y, γ∣Y) ⊆ (X, γ). Random walks in Y could possibly “escape” outside of Y.

Definition
A topological Markov chain is irreducible if it does not have any proper subchains.
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Irreducible Markov chains

Example

x0 x1 x2 . . .1 1 1

... is not irreducible.
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Irreducible Markov chains

Example
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Irreducible Markov chains

Example
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Recurrence theorem: strong version

This intuition leads to our second recurrence theorem

Theorem??
Let (X, γ) be a

:::::::
strongly

::::::::::
connected compact topological Markov chain and U ⊆ X an

open set. If U is reachable from everywhere with probability > 0, i.e. X ⊧ P(◊U) > 0,
then U is almost certainly reached infinitely often from everywhere, i.e.

X ⊧ P(◻◊U) = 1.
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Recurrence theorem: strong version

This intuition leads to our second recurrence theorem

Theorem (strong recurrence, but better) ✓
Let (X, γ) be a irreducible compact topological Markov chain and U ⊆ X a
non-empty open set.

then U is almost certainly reached infinitely often from everywhere,
i.e.

X ⊧ P(◻◊U) = 1.
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Conclusion



Conclusion

Theorem (finite recurrence)
If (X, γ) is a strongly connected finite Markov chain and x ∈ X is a state, then x is
almost certainly reached infinitely often from everywhere, i.e. X ⊧ P(◻◊ x) = 1.

Theorem (topological weak recurrence)
Let (X, γ) be a compact topological Markov chain and U ⊆ X an open set. If U is
reachable from everywhere with probability > 0, i.e. X ⊧ P(◊U) > 0, then U is almost
certainly reached infinitely often from everywhere, i.e. X ⊧ P(◻◊U) = 1.

Theorem (topological strong recurrence)
Let (X, γ) be a irreducible compact topological Markov chain and U ⊆ X a
non-empty open set. Then U is almost certainly reached infinitely often from
everywhere, i.e. X ⊧ P(◻◊U) = 1.
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Next steps

Question 1
Does every Markov chain necessarily admit an irreducible subchain?

x0 x1 x2 . . .1 1 1

What about compact chains?

Question 2
If so, does every random walk necessarily end in an irreducible subchain?

X ⊧ P(◊ ⋃
Y irred.

Y) =?
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Next steps

Similar recurrence results are known in the field of dynamical systems.
Poincarré’s recurrence theorem
Let X be a measurable space, µ ∈∆X, f ∶ XÐ→ X be measure preserving (i.e.
µ = µf−1), and U ⊆ X be such that µ(U) > 0. For almost all x ∈ U, P(◻◊U) = 1.

Investigate connections between dynamical systems and Markov chains? How does our
recurrence theorems transfer? How does the logical side transfer?
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Next steps

1. Topological bisimulations

2. Links with Büchi automata?
3. “Higher Markov chains” using simplicial sets. Geometrical detection of recurrence

phenomena?
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Now for some gory details



Where is the difficulty coming from?

Where is the difficulty coming from?

The subtle structure of the Giry monad
∆ ∶ PolÐ→ Pol.
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The Giry monad

There are two Giry monads

∆ ∶MeasÐ→Meas, ∆ ∶ PolÐ→ Pol
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The Giry monad on Meas

The “measurable Giry monad” ∆ ∶MeasÐ→Meas is fairly simple: for
X = (X,Σ) ∈Meas

1. ∆X is the set of all probability measures on X

2. ... with the coarsest σ-algebra Σ∆ such that for all U ∈ Σ, the map

IU ∶∆XÐ→ R

µz→ µ(U) = ∫ χU dµ

is measurable.

In other words, Σ∆ is the coarsest σ-algebra w.r.t. evaluation of probability measures
at measurable sets.

The unit δ ∶ XÐ→∆X maps x to its Dirac distribution δx.

52



The Giry monad on Meas

The “measurable Giry monad” ∆ ∶MeasÐ→Meas is fairly simple: for
X = (X,Σ) ∈Meas

1. ∆X is the set of all probability measures on X
2. ... with the coarsest σ-algebra Σ∆ such that for all U ∈ Σ, the map

IU ∶∆XÐ→ R

µz→ µ(U) = ∫ χU dµ

is measurable.

In other words, Σ∆ is the coarsest σ-algebra w.r.t. evaluation of probability measures
at measurable sets.

The unit δ ∶ XÐ→∆X maps x to its Dirac distribution δx.

52



The Giry monad on Meas

The “measurable Giry monad” ∆ ∶MeasÐ→Meas is fairly simple: for
X = (X,Σ) ∈Meas

1. ∆X is the set of all probability measures on X
2. ... with the coarsest σ-algebra Σ∆ such that for all U ∈ Σ, the map

IU ∶∆XÐ→ R

µz→ µ(U) = ∫ χU dµ

is measurable.

In other words, Σ∆ is the coarsest σ-algebra w.r.t. evaluation of probability measures
at measurable sets.

The unit δ ∶ XÐ→∆X maps x to its Dirac distribution δx.

52



The Giry monad on Meas

The “measurable Giry monad” ∆ ∶MeasÐ→Meas is fairly simple: for
X = (X,Σ) ∈Meas

1. ∆X is the set of all probability measures on X
2. ... with the coarsest σ-algebra Σ∆ such that for all U ∈ Σ, the map

IU ∶∆XÐ→ R

µz→ µ(U) = ∫ χU dµ

is measurable.

In other words, Σ∆ is the coarsest σ-algebra w.r.t. evaluation of probability measures
at measurable sets.

The unit δ ∶ XÐ→∆X maps x to its Dirac distribution δx.

52



The Giry monad on Meas

The “measurable Giry monad” ∆ ∶MeasÐ→Meas is fairly simple: for
X = (X,Σ) ∈Meas

1. ∆X is the set of all probability measures on X
2. ... with the coarsest σ-algebra Σ∆ such that for all U ∈ Σ, the map

IU ∶∆XÐ→ R

µz→ µ(U) = ∫ χU dµ

is measurable.

In other words, Σ∆ is the coarsest σ-algebra w.r.t. evaluation of probability measures
at measurable sets.

The unit δ ∶ XÐ→∆X maps x to its Dirac distribution δx.
52



The Giry monad on Meas

Lemma
Equivalently, Σ∆ is the coarsest σ-algebra such that for all measurable and bounded
map f ∶ XÐ→ R, the map

If ∶∆XÐ→ R

µz→ ∫ f dµ

is measurable. In other words, Σ∆ is the coarsest σ-algebra w.r.t. integration of
measurable maps.
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The Giry monad on Pol, the wrong way

Let X = (X,T) now be a Polish space. A naive generalization would be

Wrong definition

1. ∆X is the set of probability measures on (X,B(X)), the Borel algebra of X
2. ... with the coarsest topology Twrong such that for all measurable and bounded

map f ∶ XÐ→ R, the map

If ∶∆XÐ→ R

µz→ ∫ f dµ

is continuous.

We also need δ ∶ XÐ→∆X to be continuous if we want a monad ∆ ∶ PolÐ→ Pol.
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The Giry monad on Pol, the wrong way

But here’s the problem, for any measurable f ∶ XÐ→ R, the following triangle
commutes:

X R

(∆X,Twrong)

f

δ If

so X has the property that every measurable map is continuous, which forces X to be
discrete...
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The Giry monad on Pol

Wrong definition
∆X is the set of probability measures on (X,B(X)) with the coarsest topology Twrong
such that for all measurable and bounded map f ∶ XÐ→ R, the map

If ∶∆XÐ→ R

µz→ ∫ f dµ

is continuous.
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The Giry monad on Pol

Correct definition
∆X is the set of probability measures on (X,B(X)) with the coarsest topology T∆

such that for all /////////////measurable continuous and bounded map f ∶ XÐ→ R, the map

If ∶∆XÐ→ R

µz→ ∫ f dµ

is continuous.
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The Giry monad on Pol

Why is this definition such a problem?

Twrong is simple, but the only control we have
over T∆ is

Theorem (Portmanteau)
For µ,µ0, µ1, µ2, . . . ∈∆X, the following are equivalent:

1. limn µn = µ;
2. for all f ∶ XÐ→ R continuous and bounded, we have limn ∫ f dµn = ∫ f dµ;
3. for all open U ⊆ X, we have lim infn µn(U) ≥ µ(U);
4. for all closed F ⊆ X, we have lim supn µn(F) ≤ µ(F).

Proving that a map ∆XÐ→ Y is continuous is hard!
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Extension of probability measures

For example, we were unable to prove that

extn ∶∆XÐ→∆X⊙n

is continuous, where 2 ≤ n ≤∞.

Still,

Proposition
extn ∶∆XÐ→∆X⊙n is measurable, for n ≤∞.
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Extension of probability measures

The cases n = 0,1 are trivial (recall X⊙0 = ∗, X⊙1 = X).

Let 2 ≤ n <∞.

Fact
The Borel algebra of ∆(X⊙n) is generated by

β&p(E1 ⊙⋯⊙ En) ∶= {ν ∈∆(X⊙n) ∣ ν(E1 ⊙⋯⊙ En) & p}

where & ∈ {<,≤,≥,>}, p ∈ [0,1], and E1, . . . ,En ∈ B(X).

Corollary
It is enough to show that

extn
−1 (β&p(E1 ⊙⋯⊙ En))

is measurable in ∆X.
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Extension of probability measures

Recall that for µ ∈∆X,

extn µ(E1 ⊙⋯⊙ En) = ∫x1∈E1
∫x2∈E2

⋯∫xn−1∈En−1
µ(dx1) × γ(x1,dx2) ×⋯ × γ(xn−1,En).

= ∫x1∈E1
µ(dx1) (extn−1 γ(x1)) (E2 ⊙⋯⊙ En)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f

by induction, f is bounded measurable! So integrating w.r.t. to f is a measurable
operation, i.e. extn µ(E1 ⊙⋯⊙ En) is measurable in µ. Since extn(−)(E1 ⊙⋯⊙ En) is
measurable for all E1, . . . ,En ∈ B(X), we conclude that extn(−) is measurable.
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Extension of probability measures

Now for the case n =∞.

By definition,

ext∞ µ (Cyl(E1, . . . ,Ek)) = extk µ(E1 ⊙⋯⊙ Ek)

which is measurable in µ. Since ext∞(−) (Cyl(E1, . . . ,Ek)) is measurable for every
cylinder set Cyl(E1, . . . ,Ek), we conclude that ext∞(−) is measurable.
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Extension of probability measures

To summarize, for n ≤∞
extn ∶∆XÐ→∆X⊙n

is measurable.

BUT we do not know if it is continuous and we will have to work around that...
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To summarize, for n ≤∞
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The weak recurrence theorem

We want to prove
Theorem (weak recurrence)
Let (X, γ) be a compact topological Markov chain and U ⊆ X an open set. If
X ⊧ P(◊U) > 0, then

X ⊧ P(◻◊U) = 1.

for the sake of exposition, we will work backwards.
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The weak recurrence theorem

Theorem (weak recurrence)
Let (X, γ) be a compact topological Markov chain and U ⊆ X an open set. If
X ⊧ P(◊U) > 0, then

X ⊧ P(◻◊U) = 1.
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The weak recurrence theorem

Theorem (weak recurrence)
Let (X, γ) be a compact topological Markov chain and U ⊆ X an open set. If
X = ⟦P(◊U) > 0⟧, then

X = ⟦P(◻◊U) = 1⟧ .
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The weak recurrence theorem

Theorem (weak//////////////recurrence reachability)
Let (X, γ) be a compact topological Markov chain and U ⊆ X an open set. If
X = ⟦P(◊U) > 0⟧, then

X = ⟦P(◊U) = 1⟧ .

If U is reached from everywhere with probability 1, then surely it is reached infinitely
often.
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The weak recurrence theorem

Theorem (“reachability soon”)
Let (X, γ) be a compact topological Markov chain and U ⊆ X an open set. If
X = ⟦P(◊U) > 0⟧, then

X = ⟦P(◊≤k U) > r⟧

for some k and r.

If U is reached soon (≤ k) with probability > r, then surely, avoiding U forever is
impossible, i.e.

X = ⟦P(◊≤k U) > r⟧ ⇐⇒ X = ⟦P(◊U) = 1⟧ .

64



The weak recurrence theorem

So we need to show that there exist k ∈ N and r ∈ [0,1] such that

X = ⟦P(◊≤k U) > r⟧

Torwards a contradiction, assume that for all k,n ∈ N,

Rk,n ∶= ⟦P(◊≤k U) ≤ 1/n⟧ ≠ ∅

and note that by assumption

⋂
k,n

Rk,n = ⟦P(◊U) = 0⟧ = ∅.

Since X is compact, this implies that one Rk,n is empty, thus proving that

X = ⟦P(◊≤k U) > 1/n⟧

BUT we need to know that the Rk,n’s are closed!
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The weak recurrence theorem

We need to show that
Rk,n ∶= ⟦P(◊≤k U) ≤ 1/n⟧

is closed.

Note that
Rk,n = ⟦P(◻≤k Ū) ≥ 1 − 1/n⟧

= {x ∈ X ∣ extk+1 δx(Ū⊙⋯⊙ Ū) ≥ 1 − 1/n}

In other words,
Rk,n = Υ−1

k [1 − 1/n,1]

where Υk ∶ xz→ extk+1 δx(Ū⊙⋯⊙ Ū).

66



The weak recurrence theorem

We need to show that
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The weak recurrence theorem

So we have Υk ∶ xz→ extk+1 δx(Ū⊙⋯⊙ Ū),

Rk,n = Υ−1
k [1 − 1/n,1]

This is where now knowing if ext∞ is continuous is a problem.

But there is a way out: it is enough to show that Υk is upper semicontinuous (USC).

Definitions
A map f ∶ XÐ→ R is USC if for all r ∈ R, f−1[r,+∞) is closed.
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The weak recurrence theorem

So we prove that Υk ∶ xz→ extk+1 δx(Ū⊙⋯⊙ Ū) is USC.

If k = 0, then
Υ0(x) = δx(Ū) = χŪ(x)

is USC since Ū is closed.

If k = 1, then

The case k ≥ 2 can be deduced from induction, so let’s focus on k = 1.
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If k = 1, then

The case k ≥ 2 can be deduced from induction, so let’s focus on k = 1.

68



The weak recurrence theorem

So we prove that Υk ∶ xz→ extk+1 δx(Ū⊙⋯⊙ Ū) is USC.
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The weak recurrence theorem

So let’s show that γ(−, Ū) is USC. (reminder: Ū is closed).

For r ∈ R, we have to show
that

Ar ∶= γ(−, Ū)−1[r,+∞) = {x ∈ X ∣ γ(x, Ū) ≥ r}

is closed. We show that it is sequentially closed. Let x0, x1, . . . ∈ Ar converge to some
x ∈ X. Since γ ∶ XÐ→∆X is a continuous map, limn γ(xn) = γ(x). By the Portmanteau
theorem

γ(x, Ū) ≥ lim supγ(xn, Ū) ≥ r

Therefore, x ∈ Ar, and Ar is closed. This concludes the proof that γ(−, Ū) is USC.
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69



The weak recurrence theorem

So let’s show that γ(−, Ū) is USC. (reminder: Ū is closed). For r ∈ R, we have to show
that
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γ(x, Ū) ≥ lim supγ(xn, Ū) ≥ r
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The weak recurrence theorem

Rewind time:

• γ(−, Ū) is USC for all open U ⊆ X

• ... so Υk ∶ xz→ extk+1 δx(Ū⊙⋯⊙ Ū) is USC
• ... so Rk,n = ⟦P(◊≤k U) ≤ 1/n⟧ = Υ−1

k [1 − 1/n,1] is closed
• ... so there exist k,n ∈ N such that Rk,n = ⟦P(◊≤k U) ≤ 1/n⟧ = ∅, since
⋂k,n Rk,n = ∅ and X is compact

• ... so X = ⟦P(◊≤k U) > 1/n⟧, i.e. “U probably happens soon”
• ... so X = ⟦P(◊U) = 1⟧, i.e. “U certainly happens eventually”, this is the weak

reachability theorem
• ... so X = ⟦P(◻◊U) = 1⟧, i.e. “U happens infinitely often”, this is the weak

recurrence theorem
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From weak to strong

Theorem (weak recurrence)
Let (X, γ) be a compact topological Markov chain and U ⊆ X an open set. If
X ⊧ P(◊U) > 0, then

X ⊧ P(◻◊U) = 1.

Theorem (strong recurrence)
Let (X, γ) be a compact and irreducible topological Markov chain and U ⊆ X be a
nonempty open set. Then

X ⊧ P(◻◊U) = 1.

Using weak recurrence, it is enough to show that X ⊧ P(◊U) > 0. But this proof is not
very interesting or insightful so let’s move on
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Topological & pathological

Polish spaces are fairly well-behaved. But topological Markov chains are not. Let’s go
over some frustrating counterexamples.
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The weak recurrence theorem

Theorem (weak recurrence)
Let (X, γ) be a compact topological Markov chain and U ⊆ X an open set. If
X ⊧ P(◊U) > 0, then

X ⊧ P(◻◊U) = 1.
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The weak recurrence theorem

Theorem??
Let (X, γ) be a //////////compact topological Markov chain and U ⊆ X an open set. If
X ⊧ P(◊U) > 0, then

X ⊧ P(◻◊U) = 1.
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The weak recurrence theorem

Counterexample
Consider the discrete chain

u

x1 x2 x3 . . .

1 1 − p1

p1

1 − p2

p2

1 − p3

p3

where pi ∶= 1 − 1
(i+1)2 .

u is reachable from everywhere, i.e. X ⊧ P(◊{u}) > 0.
Unfortunately,

δx1(◊{u}) = 1 − ext∞ δx1({(x1, x2, . . .)}) = 1 −
∞
∏
i=1
(1 − 1

(i + 1)2) =
1
2 .

Even with reachability, the compactness criterion is necessary!
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Subchains

In the literature, a sub-Markov chain Y ⊆ X is called a closed space (as in closed w.r.t.
the ∆-coalgebra structure).

Unfortunately, Y need not be closed in the topological
sense. In fact, it may not even be measurable.

Counterexample
Simply consider X = R and γ(x) = δx, i.e. every state can only transition to itself.
Every subset is a subchain.

However

Lemma
If Y ⊆ X is irreducible, then it is measurable.
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Subchains

By irreducibility,
Y = ⋃

y∈Y
suppγ(y)

Let Q ⊆ Y be a dense countable subset of Y. Every element y ∈ Y is the limit of a
sequence q0,q1, . . . ∈ Q. By continuity of γ,

γ(y) = lim
n
γ(qn).

By the Portmanteau theorem,

suppγ(y) ⊆ lim inf supp γ(qn).

Therefore,
Y = ⋃

y∈Y
suppγ(y) = ⋃

q∈Q
suppγ(q)

is a countable union of closed sets.
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Irrecucible chains

Unfortunately, irreducibility of a subchain Y ⊆ X cannot be leveraged into any
topological property...

Y is not closed in general
Take X ∶= [0,+∞) and γ(x) ∶= δ0 if x = 0, or the uniform distribution on [ x

2 ,
3x
2 ] if

x > 0. Then Y ∶= (0,+∞) is an non-closed irreducible subchain. In particular, Y is not
compact.

Y is not open in general
Like before, take X ∶= R with γ(x) ∶= δx for all x ∈ X. Any singleton is a non-open
irreducible subchain.

Y is not connected in general
Take X ∶= {x0, x1} with the discrete topology, and γ(xi) ∶= δx1−i . Then X itself is
irreducible but not connected.
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2 ] if

x > 0. Then Y ∶= (0,+∞) is an non-closed irreducible subchain. In particular, Y is not
compact.
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irreducible subchain.

Y is not connected in general
Take X ∶= {x0, x1} with the discrete topology, and γ(xi) ∶= δx1−i .

Then X itself is
irreducible but not connected.

77



Irrecucible chains

Unfortunately, irreducibility of a subchain Y ⊆ X cannot be leveraged into any
topological property...
Y is not closed in general
Take X ∶= [0,+∞) and γ(x) ∶= δ0 if x = 0, or the uniform distribution on [ x

2 ,
3x
2 ] if

x > 0. Then Y ∶= (0,+∞) is an non-closed irreducible subchain. In particular, Y is not
compact.

Y is not open in general
Like before, take X ∶= R with γ(x) ∶= δx for all x ∈ X. Any singleton is a non-open
irreducible subchain.

Y is not connected in general
Take X ∶= {x0, x1} with the discrete topology, and γ(xi) ∶= δx1−i . Then X itself is
irreducible but not connected. 77



Reachability property

Definition
A subchain Y ⊆ X has the reachability property (in X) if for all nonempty open set
U ⊆ X, we have Y ⊧ P(◊U) > 0.

In other words, X is “almost irreducible”. The weak recurrence theorem can be
rephrased as follows:

Theorem (weak recurrence)
If X is compact and has the reachability property in itself, then for all nonempty open
set U, X ⊧ P(◻◊U) = 1.

The reachability property is an important notion to establish the strong recurrence
theorem.
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Weak < strong

The weak recurrence theorem is strictly weaker than the strong recurrence theorem, in
that if X has the reachability property in itself, then X is not necessarily irreducible.

Counterexample
Take X ∶= [0,1]A + (0,1]B. The subscripts are purely decorative, if x ∈ [0,1], let xA
be the corresponding element in the A component, and likewise for xB (if x > 0).

Let γ(xA) be the uniform distribution on (0,1]B and γ(xB) = δxA .

This Markov chain clearly has the reachability property, but it is not irreducible, for
Y ∶= (0,1]A + (0,1]B is a proper subchain.
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Conclusion

1. The topological study of Markov chains is a bit tricky due to the nature of
∆ ∶ PolÐ→ Pol.

2. We saw how to walk around problems in the proof of the weak recurrence theorem.
3. We saw some basic counterexamples.
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