Algebraic K-Theory

Prof. K. Hess-Bellwald
TEXed by Cédric Ho Thanh

Spring 2013

Contents

1 Introduction : motivations and relations to other fields 5
$1.1 K_{0}$ 5
1.1.1 Motivation from linear algebra 5
1.1.2 Generalisation to arbitrary ring 6
1.1.3 Relations to other subjects 6
$1.2 \quad K_{1}$ 7
1.2.1 Motivation from linear algebra 7
1.2.2 Generalisation to arbitrary ring 7
1.2.3 Relations to other subjects 8
$2 \quad K_{0}$ and classification of modules 9
2.1 \quad Definition and elementary properties of K_{0} 9
2.1.1 Group completion 9
2.1.2 Elementary module theory 12
2.1.3 Grothendieck groups 12
2.1.4 Dévissage 15
2.1.5 The resolution theorem 21
2.1.6 \quad Stability 26
2.1.7 Multiplicative structure in $K_{0} R$ 29
2.2 Functoriality of Grothendieck group 32
2.2.1 Exact functors 32
2.3 Localization 37
$3 \quad K_{1}$ and classification of invertible matrices 47
3.1 Matrix-theoretical approach to K_{1} 47
3.2 The universal property of $K_{1} R$ 49
3.3 A Grothendieck type approach to K_{1}. 51
3.4 K-Theory as a homology theory of rings 54

Chapter 1

Introduction : motivations and relations to other fields

Algebraic K-theory can be viewed as homology theory for rings. It consists in a family of functors

$$
K_{n}: \mathbf{R i n g} \longrightarrow \mathbf{A b}, \quad \forall n \in \mathbb{N}
$$

thar "behave like" homology of spaces. During this semester, we will study K_{0} and K_{1}.

$1.1 K_{0}$

The idea is due to Groethendieck (1958) :

$$
\begin{array}{cl}
\mathbf{C} \longrightarrow & \text { Iso } \mathbf{C} \longrightarrow K(\mathbf{C}) \in \text { Obj } \mathbf{A b} \\
\text { a category } \quad \text { isomorphism classes of } \mathbf{C} \quad \text { Groethendieck group of } \mathbf{C}
\end{array}
$$

We will apply this general construction to $\mathbf{C}=\mathscr{P}(R)$, the category of "nice" modules over the ring R. If R is a field, $\mathscr{P}(R)$ is the category of finite-dimensional vector space over R.

$$
\mathscr{P}(R) \longrightarrow \text { Iso } \mathscr{P}(R) \longrightarrow K(\text { Iso } \mathscr{P}(R))=K_{0}(R)
$$

1.1.1 Motivation from linear algebra

Let \mathbb{F} be a field and $\mathscr{V}_{\mathbb{F}}^{<\infty}$ be the category of finite-dimensional \mathbb{F}-vector space. We have a bijection

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{F}}: \text { Iso } \mathscr{V}_{\mathbb{F}}^{<\infty} & \longrightarrow \mathbb{N} \\
{[V] } & \longmapsto \operatorname{dim}_{\mathbb{F}} V
\end{aligned}
$$

since $V \cong W$ iff $\operatorname{dim}_{\mathbb{F}} V=\operatorname{dim}_{\mathbb{F}} W$. Moreover :

$$
\begin{gathered}
\operatorname{dim}_{\mathbb{F}}(V \oplus W)=\operatorname{dim}_{\mathbb{F}} V+\operatorname{dim}_{\mathbb{F}} W \\
V \cong V^{\prime}, W \cong W^{\prime} \Longrightarrow V \oplus W \cong V^{\prime} \oplus W^{\prime}
\end{gathered}
$$

So :

- \oplus induces a binary operation on Iso $\mathscr{V}_{\mathbb{F}}<\infty:[V]+[W]=[V \oplus W]$,
- $\operatorname{dim}_{\mathbb{F}}([V]+[W])=\operatorname{dim}_{\mathbb{F}}[V]+\operatorname{dim}_{\mathbb{F}}[W]$.

But $(\mathbb{N},+)$ is not a group, and we'd rather work with groups.

1.1.2 Generalisation to arbitrary ring

Let \mathbf{C} be the category of "nice" R-modules and A be an abelian group. A fonction d : Iso $\mathbf{C} \longrightarrow A$ is a generalized rank (or dimension) if :

$$
d([M]+[N])=d([M])+d([N]), \quad \forall[M],[N] \in \operatorname{Iso} \mathbf{C}
$$

$K_{0}(R)$ is the target of the universal generalized rank, i.e. $\exists d_{R}:$ Iso $\mathscr{P}(R) \longrightarrow K_{0}(R)$ such that every other generalized rank $d:$ Iso $\mathscr{P}(R) \longrightarrow A$ factors uniquely through d_{R} :

So $K_{0}(R)$ captures all "dimension type" information about R.

1.1.3 Relations to other subjects

- Number theory : Let R be a Dedekind domain (very nice commutative integral domain) and let $\mathrm{Cl}(R)$ be the ideal class group of R (measures how far R is for being a principal ideal domain). Then $K_{0}(R)=\mathrm{Cl}(R) \oplus \mathbb{Z}$.
- Representation theory : Let \mathbb{F} be a field of characteristic 0 and G be a finite group. Consider the group algebra $\mathbb{F}[G]$. Then $K_{0}(\mathbb{F}[G])=\operatorname{char}_{\mathbb{F}}(G)$, the character ring of G over \mathbb{F}, where an \mathbb{F}-character is a composition :

$$
G \xrightarrow{\rho} \mathrm{GL}_{n}(\mathbb{F}) \xrightarrow{\operatorname{tr}} \mathbb{F}
$$

Notice that tr also preserves sums !

- Geometric topology : Let X be a connected topological space. Question : When does there exists a finite-dimensional CW-complex Y such that $X \simeq Y$? Awnser (Wall, 1965) : $\exists \widetilde{\chi} \in$ $K_{0}\left(\mathbb{Z}\left[\pi_{1} X\right]\right) / \mathbb{Z}$, the finiteness obstruction, such that $\widetilde{\chi}=0$ iff $X \simeq Y$ for a finite-dimensional CW-complex Y. This is a purely algebraic awnser to a topological problem!
"Douglas Adams said that the awnser is 42, maybe it's K_{0}."
Prof. K. Hess-Bellwald
21/02/2013

$1.2 \quad K_{1}$

K_{1} is motivated by the notion of determinant, a multiplicative invariant.

1.2.1 Motivation from linear algebra

Let \mathbb{F} be a field. Then

$$
\operatorname{det}: \operatorname{GL}_{n}(\mathbb{F}) \longrightarrow F^{*}
$$

has the property that

$$
\begin{aligned}
\operatorname{det}(A B) & =\operatorname{det} A \cdot \operatorname{det} B, \\
\operatorname{det}(E A) & =\operatorname{det} A
\end{aligned}
$$

where $A, B, E \in \mathrm{GL}_{n}(\mathbb{F})$ are matrices and E is an elementary matrix.

1.2.2 Generalisation to arbitrary ring

A generalized determinant consists in a group G and in a family of maps $\left\{\delta_{n}\right\}_{n \in \mathbb{N}^{*}}$ where δ_{n} : $\mathrm{GL}_{n}(\mathbb{F}) \longrightarrow G$ satifies :

- the following diagram commutes :

with the inclusion

$$
\begin{aligned}
\mathrm{GL}_{n}(\mathbb{F}) & \longrightarrow \mathrm{GL}_{n+1}(\mathbb{F}) \\
A & \longmapsto\left(\begin{array}{cc}
A & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

- $\delta_{n}(A B)=\delta_{n}(A) \delta_{n}(B)$,
- $\delta_{n}(E)=1_{G}$, where E is an elementary matrix.
$K_{1}(R)$ is the target of the universal generalized determinant, i.e. $\exists \delta_{n}^{R}: \mathrm{GL}_{n}(R) \longrightarrow K_{1}(R)$ a generalized determinant such that every other genaralized determinant $\delta_{n}: \mathrm{GL}_{n}(R) \longrightarrow G$ factors uniquely through δ_{n}^{R} :

So $K_{1}(R)$ captures all of the "determinant type" information about R.

1.2.3 Relations to other subjects

- Geometric topology : Let $f: X \longrightarrow Y$ be a homotopy equivalence of finite dimensional CWcomplexes. Then f is a simple homotopy equivalence (given by composing particular elementary homotopy equivalences) if the Whitehead torsion of $f: \tau(f) \in K_{1}\left(\mathbb{Z}\left[\pi_{1} Y\right]\right) /\left\langle \pm 1, \pi_{1} Y\right\rangle$ is 0 . Another purely algebraic awnser to a topological question!

Chapter 2

K_{0} and classification of modules

2.1 Definition and elementary properties of K_{0}

2.1.1 Group completion

2.1.1 Definition (Semigroup). A semigroup consists of a set S together with an associative binary operation

$$
\begin{aligned}
& S \times S \longrightarrow S \\
& \left(s, s^{\prime}\right) \longmapsto s * s^{\prime}
\end{aligned}
$$

Homomorphisms are defined in the obvious way. The category of semigroups is written SGrp .
2.1.2 Examples. 1. Any group has an underlying semigroup. We have a forgatful functor $\mathscr{U}: \operatorname{Grp} \longrightarrow$ SGrp.
2. $\left(\mathbb{N}^{*},+\right)$ and (\mathbb{N}, \cdot).
3. (Iso $\mathscr{V}_{\mathbb{F}}^{<\infty},+$).
4. Let X be a set. Then $(\mathscr{P}(X), \cap)$ is a semigroup.
2.1.3 Remark. $\operatorname{dim}_{\mathbb{F}}:\left(\operatorname{Iso} \mathscr{V}_{\mathbb{F}}^{<\infty},+\right) \longrightarrow(\mathbb{N},+)$ is a homomorphisme of semigroups.

How to turn a semigroup into an abelian group in a natural way ?
2.1.4 Definition (Group completion). A group completion of a semigroup ($S, *$) consists of an abelian group A together with a homomorphism of semigroups $f: S \longrightarrow \mathscr{U} A$ such that $\forall B \in$ Obj Ab, every semigroup homomorphism $g: S \longrightarrow \mathscr{U} B$ factors uniquely through f :

2.1.5 Remark. If the group completion of S exists, then it is unique up to isomorphism.
2.1.6 Definition (Free abelian group). The free abelian group functor is given by :

$$
\begin{aligned}
F_{\mathbf{A b}}: \text { Set } & \longrightarrow \mathbf{A b} \\
X & \longmapsto \bigoplus_{x \in X} \mathbb{Z} x \\
(X \xrightarrow{f} Y) & \longmapsto\left(F_{\mathbf{A b}} X \xrightarrow{F_{\mathbf{A b}} f} F_{\mathbf{A b}} Y\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& F_{\mathbf{A b}} f: F_{\mathbf{A} \mathbf{b}} X \longrightarrow F_{\mathbf{A b}} Y \\
& \qquad \sum_{x \in X} m_{x} x \longmapsto \sum_{x \in X} m_{x} f(x)=\sum_{y \in Y}\left(\sum_{x \in f^{-1}(y)} m_{x}\right) y .
\end{aligned}
$$

2.1.7 Remark. The functor $F_{\mathbf{A b}}$ satisfies a universal property : $\forall A \in \operatorname{Obj} \mathbf{A b}$ every set map f : $X \longrightarrow A$ factors uniquely through $\iota: X \hookrightarrow F_{\mathbf{A b}} X:$

2.1.8 Theorem. There exists a functor $(-)^{\wedge}: \mathbf{S G r p} \longrightarrow \mathbf{A b}$ such that $(S, *)^{\wedge}$ is the group completion of S.
Proof. We can define group completion by :

$$
(S, *)^{\wedge}=F_{\mathbf{A b}} S /\left\langle s * s^{\prime}-s-s^{\prime} \mid s, s^{\prime} \in S\right\rangle
$$

For convenience, we note $D=\left\langle s * s^{\prime}-s-s^{\prime} \mid s, s^{\prime} \in S\right\rangle$, so $(S, *)^{\wedge}=F_{\mathbf{A b}} S / D$. We need to show the universal property. Let $(A,+)$ be an abelian group and $f:(S, *) \longrightarrow \mathscr{U}(A,+)$ be a semigroup homomorphism. Define

$$
\begin{aligned}
\gamma:(S, *) & \longrightarrow(S, *)^{\wedge} \\
s & \longmapsto[s] .
\end{aligned}
$$

By the universal property of $F_{\mathbf{A b}}, \exists!\tilde{f}: F_{\mathbf{A b}} S \longrightarrow(A,+)$ such that

i.e. $\widetilde{f}(s)=f(s), \forall s \in S$. Observe that we have

We have

$$
\begin{aligned}
\tilde{f}\left(s * s^{\prime}-s-s^{\prime}\right) & =\widetilde{f}\left(s * s^{\prime}\right)-\tilde{f}(s)-\tilde{f}\left(s^{\prime}\right) \\
& =\underbrace{f\left(s * s^{\prime}\right)}_{=f(s)+f\left(s^{\prime}\right)}-f(s)-f\left(s^{\prime}\right) \\
& =0
\end{aligned}
$$

So $\operatorname{ker} \pi=D \subseteq \operatorname{ker} \tilde{f}$ and $(S, *)^{\wedge}$ satisfies the universal property.

2.1.9 Properties. \quad 1. $\forall w \in(S, *)^{\wedge}, \exists s, t \in S$ such that $w=[s]-[t]$.

2. If $(S, *)$ is abelian, then
(a) $[s]=\left[s^{\prime}\right] \Longleftrightarrow \exists u \in S$ such that $s * u=s^{\prime} * u$,
(b) $[s]-[t]=\left[s^{\prime}\right]-\left[t^{\prime}\right] \Longleftrightarrow \exists u \in S$ such that $s * t^{\prime} * u=s^{\prime} * t * u$.

Proof. 1. Let $w=\sum_{i=1}^{n} \mu_{i}\left[s_{i}\right]$ where $\mu_{i} \in \mathbb{Z}^{*}$ and $s_{i} \in S$. Let $\left\{i_{1}, \ldots, i_{k}\right\}=\left\{i \mid \mu_{i}>0\right\}$ and $\left\{j_{1}, \ldots, j_{l}\right\}=\left\{i \mid \mu_{i}<0\right\}$. Write

$$
\begin{aligned}
w & =\sum_{\nu=1}^{k} \mu_{i_{\nu}}\left[s_{i_{\nu}}\right]-\sum_{\nu=1}^{l}\left|\mu_{j_{\nu}}\right|\left[s_{j_{\nu}}\right] \\
& =\sum_{\nu=1}^{k}\left[s_{i_{\nu}}^{* \mu_{i_{\nu}}}\right]-\sum_{\nu=1}^{l}\left[s_{j_{\nu}}^{\left|\mu_{j_{\nu}}\right|}\right] \\
& =\left[s_{i_{1}}^{* \mu_{i_{1}}} * \cdots * s_{i_{k}}^{* i_{i_{k}}}\right]-\left[s_{j_{1}}^{*\left|\mu_{j_{1}}\right|} * \cdots * s_{j_{l}}^{*\left|\mu_{j_{l}}\right|}\right] .
\end{aligned}
$$

2. (a)
$\Leftarrow: ~ O n e ~ h a v e$

$$
\begin{aligned}
s * u=s^{\prime} * u & \Longrightarrow[s * u]=\left[s^{\prime} * u\right] \\
& \Longrightarrow[s]+[u]=\left[s^{\prime}\right]+[u] \\
& \Longrightarrow[s]=\left[s^{\prime}\right] .
\end{aligned}
$$

\Rightarrow : One have that $[s]=\left[s^{\prime}\right] \Longrightarrow s-s^{\prime} \in D=\left\langle t * t^{\prime}-t-t^{\prime} \mid t, t^{\prime} \in S\right\rangle$, i.e. $\exists \mu_{i} \in \mathbb{Z}^{*}$, $\exists t_{i}, t_{i}^{\prime} \in S$ such that

$$
s-s^{\prime}=\sum_{i=1}^{n} \mu_{i}\left(t_{i} * t_{i}^{\prime}-t_{i}-t_{i}^{\prime}\right)
$$

Let $\left\{i_{1}, \ldots, i_{k}\right\}=\left\{i \mid \mu_{i}>0\right\}$ and $\left\{j_{1}, \ldots, j_{l}\right\}=\left\{i \mid \mu_{i}<0\right\}$. Write
$s+\sum_{\nu=1}^{l}\left|\mu_{j_{\nu}}\right|\left(t_{j_{\nu}} * t_{j_{\nu}}^{\prime}\right)+\sum_{\nu=1}^{k} \mu_{i_{\nu}}\left(t_{i_{\nu}}+t_{i_{\nu}}^{\prime}\right)=s^{\prime}+\sum_{\nu=1}^{k} \mu_{i_{\nu}}\left(t_{i_{\nu}} * t_{i_{\nu}}^{\prime}\right)+\sum_{\nu=1}^{l}\left|\mu_{j_{\nu}}\right|\left(t_{j_{\nu}}+t_{j_{\nu}}^{\prime}\right)$.
This is an equation un $F_{\mathbf{A b}} S$. It follows that in S

$$
\begin{aligned}
& s *\left(t_{j_{1}} * t_{j_{1}}^{\prime}\right)^{\left|\mu_{j_{1}}\right|} * \cdots *\left(t_{j_{l}} * t_{j_{l}}^{\prime}\right)^{\left|\mu_{j_{l}}\right|} * t_{i_{1}}^{\mu_{i_{1}}} *\left(t_{i_{1}}^{\prime}\right)^{\mu_{i_{1}}} * \cdots * t_{i_{k}}^{\mu_{i_{k}}} *\left(t_{i_{k}}^{\prime}\right)^{\mu_{i_{k}}} \\
& =s^{\prime} *\left(t_{i_{1}} * t_{i_{1}}^{\prime}\right)^{\left|\mu_{i_{1}}\right|} * \cdots *\left(t_{i_{k}} * t_{i_{k}}^{\prime}\right)^{\left|\mu_{i_{k}}\right|} * t_{i_{1}}^{\mu_{j_{1}}} *\left(t_{j_{1}}^{\prime}\right)^{\mu_{j_{1}}} * \cdots * t_{j_{l}}^{\mu_{l}} *\left(t_{j_{l}}^{\prime}\right)^{\mu_{j_{l}}} .
\end{aligned}
$$

Since S is abelian, we have

$$
\begin{aligned}
& \left(t_{j_{1}} * t_{j_{1}}^{\prime}\right)^{\left|\mu_{j_{1}}\right|} * \cdots *\left(t_{j_{l}} * t_{j_{l}}^{\prime}\right)^{\left|\mu_{j_{l}}\right|} * t_{i_{1}}^{\mu_{i_{1}}} *\left(t_{i_{1}}^{\prime}\right)^{\mu_{i_{1}}} * \cdots * t_{i_{k}}^{\mu_{i_{k}}} *\left(t_{i_{k}}^{\prime}\right)^{\mu_{i_{k}}} \\
& =\left(t_{i_{1}} * t_{i_{1}}^{\prime}\right)^{\left|\mu_{i_{1}}\right|} * \cdots *\left(t_{i_{k}} * t_{i_{k}}^{\prime}\right)^{\left|\mu_{i_{k}}\right|} * t_{i_{1}}^{\mu_{j_{1}}} *\left(t_{j_{1}}^{\prime}\right)^{\mu_{j_{1}}} * \cdots * t_{j_{l}}^{\mu_{l}} *\left(t_{j_{l}}^{\prime}\right)^{\mu_{j_{l}}} \\
& =u .
\end{aligned}
$$

and therefore $s * u=s^{\prime} * u$.
(b) We have

$$
\begin{aligned}
{[s]-[t]=\left[s^{\prime}\right]-\left[t^{\prime}\right] } & \Longrightarrow[s]+\left[t^{\prime}\right]=\left[s^{\prime}\right]+[t] \\
& \Longrightarrow\left[s * t^{\prime}\right]=\left[s^{\prime} * t\right] \\
& \Longrightarrow \exists u \in S \text { such that } s * t^{\prime} * u=s^{\prime} * t * u .
\end{aligned}
$$

2.1.10 Examples. $\quad 0 .(\emptyset, *)^{\wedge}=(\{0\},+)$. There is two ways to see this :

- $F_{\mathbf{A b}} \emptyset=(\{0\},+)$,
- use the universal proterty :

1. $S=\{s\}, \exists!*: S \times S \longrightarrow S:(s, s) \longmapsto s * s=s$. Then, $(\{s\}, *)^{\wedge}=(\{0\},+)$ because in $(\{s\}, *)^{\wedge},[s]=[s * s]=[s]+[s]$, whence $[s]=0$.
2. More generaly, is $s * s=s, \forall s \in S$, then $(S, *)^{\wedge}=(\{0\},+)$. For example, if X is a set, then $(\mathscr{P}(X), \cap)^{\wedge}=(\{0\},+)$.
3. $\left(\mathbb{N}^{*},+\right)^{\wedge}=(\mathbb{Z},+)$.
4. $\left(\mathbb{N}^{*}, \cdot\right)^{\wedge}=\left(\mathbb{Q}_{+}^{*}, \cdot\right)$.
2.1.11 Remarks. - $(S, *)^{\wedge} \cong(T, *)^{\wedge}$ does not implies $(S, *) \cong(T, *)$.

- $\gamma:(S, *) \longrightarrow(S, *)^{\wedge}$ is non necessarily injective.

2.1.2 Elementary module theory

See at http://wiki.epfl.ch/alg-kthy-2013/documents/Elements_of_module_theory.pdf.

2.1.3 Grothendieck groups

A construction closely related to group completion.
2.1.12 Definition (Grothendieck group). Let R be a ring and \mathscr{C} be a subcategory of ${ }_{R}$ Mod (left R-modules) such that Iso \mathscr{C} is a set and $0 \in \operatorname{Obj} \mathscr{C}$. Then, the Grothendieck group of \mathscr{C} is defined as

$$
K_{0} \mathscr{C}=F_{\mathbf{A b}}(\text { Iso } \mathscr{C}) / E
$$

where

$$
E=\langle M-L-N| \text { There exists a short exact sequence in } \mathscr{C}: 0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0\rangle .
$$

In other word, if $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is an exact sequence in \mathscr{C}, then $[M]=[L]+[N]$ in $K_{0} \mathscr{C}$.
2.1.13 Remark. If \mathscr{C} is closed under direct sum \oplus, then $\forall L, N \in \operatorname{Obj} \mathscr{C}$, there exist a short exact sequence $0 \rightarrow L \rightarrow L \oplus N \rightarrow N \rightarrow 0$ and so $[L \oplus N]=[L]+[N]$.

The key universal property here can be formulated as follows :
2.1.14 Definition (Generalized rank). Let \mathscr{C} be as above. A generalized rank on \mathscr{C} is a function

$$
r: \text { Iso } \mathscr{C} \longrightarrow(A,+)
$$

where $(A,+)$ is an abelian group, such that $r(M)=r(L)+r(N)$ for every short exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ in \mathscr{C}.
2.1.15 Proposition. Les \mathscr{C} be as above. There is a well defined function $d_{\mathscr{C}}$: Iso $\mathscr{C} \longrightarrow K_{0} \mathscr{C}$ that is a generalized rank and universal, i.e. every other generalized rank r : Iso $\mathscr{C} \longrightarrow(A,+)$ factors uniquely through $d_{\mathscr{C}}$:

Proof. Let $d_{\mathscr{C}}$ be the following compsite :

$$
\text { Iso } \mathscr{C} \xrightarrow{\iota} F_{\mathbf{A b}}(\text { Iso } \mathscr{C}) \xrightarrow{\pi} F_{\mathbf{A b}}(\text { Iso } \mathscr{C}) / E=K_{0} \mathscr{C}
$$

It's a generalized rank because for all short exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ in \mathscr{C},

$$
\begin{aligned}
d_{\mathscr{C}}(M) & =[M] \\
& =[L]+[N] \\
& =d_{\mathscr{C}}(L)+d_{\mathscr{C}}(N) .
\end{aligned}
$$

It's universal because for every generalized rank r : Iso $\mathscr{C} \longrightarrow(A,+)$, we have

Suppose $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ in \mathscr{C}. Then

$$
\begin{aligned}
\widetilde{r}(M-L-N) & =\widetilde{r}(M)-\widetilde{r}(L)-\widetilde{r}(N) \\
& =r(M)-r(L)-r(N) \\
& =r(L+N)-r(L)-r(N) \\
& =0 .
\end{aligned}
$$

Relationship with the group completion :
2.1.16 Proposition. Let \mathscr{C} be as above and suppose that $\forall L, N \in \operatorname{Obj} \mathscr{C}$ we have $L \oplus N \in \operatorname{Obj} \mathscr{C}$ (i.e. \mathscr{C} is stable under direct sum \oplus) and that $L \hookrightarrow L \oplus N, L \oplus N \rightarrow N$ are morphisms of \mathscr{C}. Then there exists a surjective homomorphism (Iso $\mathscr{C}, \oplus)^{\wedge} \longrightarrow K_{0} \mathscr{C}$.

Proof. (Iso $\mathscr{C}, \oplus)^{\wedge}=F_{\mathbf{A b}}($ Iso $\mathscr{C}) / D$ where $D=\langle L \oplus N-L-N \mid L, N \in \operatorname{Obj} \mathscr{C}\rangle$. So $D \leq E$ since there exists a short exact sequence $0 \rightarrow L \rightarrow L \oplus N \rightarrow N \rightarrow 0$. Therefore, there exists a surjective homomorphism

$$
(\text { Iso } \mathscr{C}, \oplus)^{\wedge}=F_{\mathbf{A b}}(\text { Iso } \mathscr{C}) / D \longrightarrow F_{\mathbf{A b}}(\text { Iso } \mathscr{C}) / E=K_{0} \mathscr{C} .
$$

2.1.17 Examples. 1. Let $\mathscr{C}=\mathscr{S}(R)$, the full subcategory of finitely generated simple R modules. If M is simple and is $0 \rightarrow L \xrightarrow{j} M \rightarrow N \rightarrow 0$ is exact, then, since j is injective, one has $L \cong j(L)$ which is a submodule of M. Therefore, either

- $j(L)=0$ which implies $L=0$ and $M \cong N$:

$$
0 \rightarrow 0 \rightarrow M \stackrel{\cong}{\rightrightarrows} N \rightarrow 0,
$$

- $j(L)=M$ which implies $M \cong M$ and $N=0$:

$$
0 \rightarrow L \stackrel{\cong}{\leftrightarrows} M \rightarrow 0 \rightarrow 0
$$

So $E=\langle[M]-[M] \mid M \in \operatorname{Iso} \mathscr{C}\rangle=0$ and

$$
K_{0} \mathscr{S}(R)=F_{\mathbf{A b}}(\text { Iso } \mathscr{S}(R))
$$

2. Let R be a ring and $\mathscr{F}(R)$ be the full subcategory of free and finitely generated left R-modules. If R has a invariant basis number (or IBN) (i.e. two isomorphic free modules have the same basis cardinality), then we can calculate $K_{0} \mathscr{F}(R)$. Any free module has a well defined rank: if X is a basis of M, then $\operatorname{rank} M=\sharp X$. In fact, we even have a well defined function

$$
\begin{aligned}
\text { rank : Iso } \mathscr{F}(R) & \longrightarrow \mathbb{Z} \\
{[M] } & \longmapsto \operatorname{rank} M .
\end{aligned}
$$

This is an example of a generalized rank. Given $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$, an exact sequence in $\mathscr{F}(R)$. It splits since N is free, so $M \cong L \oplus N$. If L is free of basis X and N of basis Y,
then M is free on basis $X \amalg Y$. Si rank $M=\operatorname{rank} L+\operatorname{rank} N$, and it is a generalized rank. Consequently :

In fact, \widehat{r} is an isomorphism :
Surjectivity : If $n \geq 0$, then $\operatorname{rank} R^{\oplus n}=n$ and $\widehat{r}\left(-\left[R^{\oplus n}\right]\right)=-n$.
Injectivity : R has an IBN.
rom exercise set 3 , if R is commutative, then it has a IBN. So, if R is commutative, then $K_{0} \mathscr{F}(R) \cong \mathbb{Z}$.
3. Let $\mathscr{P}(R)$ be the full subcategory of finitely generated projective left R-modules, and note $K_{0} R=K_{0} \mathscr{P}(R)$ (the 0th algebraic theory group of R). Then

- $\mathscr{P}(R)$ is closed under \oplus. If P and Q are projective, then $\exists P^{\prime}, Q^{\prime}$ such that $P \oplus P^{\prime}$ and $Q \oplus Q^{\prime}$ are free. Then $\left(P \oplus P^{\prime}\right) \oplus\left(Q \oplus Q^{\prime}\right)$ is also free and $P \oplus Q$ is projective.
- The homomorphism (Iso $\mathscr{P}(R), \oplus)^{\wedge} \longrightarrow K_{0} \mathscr{P}(R)$ is an isomorphism. If $0 \rightarrow P \rightarrow P^{\prime} \rightarrow$ $P^{\prime \prime} \rightarrow 0$ is an exact sequence in $\mathscr{P}(R)$, then is splits and $P^{\prime} \cong P \oplus P^{\prime \prime}$.

4. Let $\mathscr{M}(R)$ be the full subcategory of finitely generated left R-modules, and note $G_{0} R=$ $K_{0} \mathscr{M}(R)$. Usually, $G_{0} R \not \neq$ (Iso $\left.\mathscr{M}(R), \oplus\right)^{\wedge}$. For instance, if $R=\mathbb{Z}$, then we have an exact sequence

and therefore, in $G_{0} R$, we have $[\mathbb{Z}]=[\mathbb{Z}]+[\mathbb{Z} / p \mathbb{Z}]$ and so $[\mathbb{Z} / p \mathbb{Z}]=0$. However, in (Iso $\mathscr{M}(R), \oplus)^{\wedge}$, we have $[\mathbb{Z} / p \mathbb{Z}] \neq 0$ since $\forall A$ an finitely generated abelian group, $A \neq$ $A \oplus \mathbb{Z} / p \mathbb{Z}$.
2.1.18 Remark. Why do we emphasize on the finite generation? Because of the Eilenberg Swindle : if \mathscr{C} is a subcategory of ${ }_{R} \operatorname{Mod}$ closed under countable direct sum, then $K_{0} \mathscr{C} \cong\{0\}$. Indeed, let $M \in \operatorname{Obj} \mathscr{C}$. Then $N=\oplus_{i \in \mathbb{N}} M \in \operatorname{Obj} \mathscr{C}$. But $M \oplus N \cong N$ and so $[M]+[N]=[N]$ which implies $[M]=0$.

2.1.4 Dévissage

The group $K_{0} \mathscr{C}$ can be very hard to compute! We need tools to help with the computation. The first we'll see is the Dévissage.
2.1.19 Definition (Filtration). Let \mathscr{C} and \mathscr{D} be two subcategories of ${ }_{R} \operatorname{Mod}$ such that \mathscr{D} is a subcategory of \mathscr{C}. A \mathscr{D}-filtration of an object M in \mathscr{C} is a sequence

$$
\{0\}=M_{n} \subseteq M_{n-1} \subseteq \cdots \subseteq M_{1} \subseteq M_{0}=M
$$

such that $M_{i} / M_{i+1} \in \operatorname{Obj} \mathscr{D}, \forall 0 \leq i<n$.

The idea is that if there exists a \mathscr{D}-filtration in \mathscr{C} of M, then M is "build out of" objects of \mathscr{D} :

- $M_{n-1} \in \operatorname{Obj} \mathscr{D}$ since $M_{n}=\{0\}$,
- we have

$$
0 \longrightarrow M_{n-1} \longrightarrow M_{n-2} \longrightarrow M_{n-2} / M_{n-1} \longrightarrow 0
$$

where M_{n-1} and M_{n-2} / M_{n-1} are objects of \mathscr{D}.
2.1.20 Lemma. Let $\{0\}=M_{n} \subseteq \cdots \subseteq M_{0}=M$ be a \mathscr{C} filtration in \mathscr{C} of $M \in \operatorname{Obj} \mathscr{C}$. Then in $K_{0} \mathscr{C}$:

$$
[M]=\sum_{i=0}^{n-1}\left[M_{i} / M_{i+1}\right]
$$

Proof. We have

$$
\begin{aligned}
\sum_{i=0}^{n-1}\left[M_{i} / M_{i+1}\right] & =\sum_{i=0}^{n-1}\left[M_{i}\right]-\left[M_{i+1}\right] \quad \text { since } 0 \rightarrow M_{i+1} \rightarrow M_{i} \rightarrow M_{i} / M_{i+1} \rightarrow 0 \\
& =\left[M_{0}\right]-\left[M_{n}\right] \\
& =[M]
\end{aligned}
$$

2.1.21 Lemma (Zassenhaus). Given $M^{\prime} \subseteq M$ and $N^{\prime} \subseteq N$ in ${ }_{R}$ Mod, then

$$
\frac{M^{\prime}+M \cap N}{M^{\prime}+M \cap N^{\prime}} \cong \frac{M \cap N}{M \cap N^{\prime}+M^{\prime} \cap N} \cong \frac{N^{\prime}+M \cap N}{N^{\prime}+M^{\prime} \cap N}
$$

Proof, sketch. Define

$$
\begin{aligned}
\phi: M^{\prime}+M \cap N & \longrightarrow \frac{M \cap N}{M \cap N^{\prime}+M^{\prime} \cap N} \\
x^{\prime}+x & \longmapsto[x] .
\end{aligned}
$$

- It is well defined because

$$
x^{\prime}+x=y^{\prime}+y \Longleftrightarrow x^{\prime}-y=y^{\prime}-x \in M^{\prime} \cap(M \cap N)=M^{\prime} \cap N
$$

- It is clearly a surjective homomorphism.
- $\operatorname{ker} \phi=M^{\prime}+M \cap N^{\prime}$.
2.1.22 Theorem (Dévissage). Let \mathscr{C} be a full subcategory of ${ }_{R} \operatorname{Mod}$ and \mathscr{D} a subcategory of \mathscr{C}, such that $0 \in \operatorname{Obj} \mathscr{D} \subseteq \operatorname{Obj} \mathscr{C}$ and Iso \mathscr{C}, Iso \mathscr{D} are both sets. If

1. for all exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ in \mathscr{C} we have

$$
M \in \operatorname{Obj} \mathscr{D} \Longrightarrow L, N \in \operatorname{Obj} \mathscr{D}
$$

2. every object of \mathscr{C} admit a \mathscr{D}-filtration in \mathscr{C},
then

$$
K_{0} \mathscr{C} \cong K_{0} \mathscr{D}
$$

Proof. Let us define two homomorphisms $K_{0} \mathscr{D} \longrightarrow K_{0} \mathscr{C}$ and $K_{0} \mathscr{C} \longrightarrow K_{0} \mathscr{D}$ that are mutually inverse.

- The inclusion functor $\iota: \mathscr{D} \longrightarrow \mathscr{C}$ induces a set map $\iota:$ Iso $\mathscr{D} \longrightarrow \mathscr{C}$. Consider

the map $d_{\mathscr{C}} \circ \iota$ is a generalized rank, so there exists a unique homomorphism $\widehat{\iota}: K_{0} \mathscr{D} \longrightarrow K_{0} \mathscr{C}$. Moreover, $\widehat{\iota}\left([M]_{\mathscr{D}}\right)=[M]_{\mathscr{C}}$.
- Let us define the inverse homomorphism. Inspired by lemma 2.1.20 define

$$
\begin{aligned}
r: \text { Iso } \mathscr{C} & \longrightarrow K_{0} \mathscr{D} \\
M & \longmapsto \sum_{i=0}^{n-1}\left[M_{i} / M_{i+1}\right]_{\mathscr{D}},
\end{aligned}
$$

where $\left(M_{i}\right)_{i \leq n}=\left(M_{\bullet}\right)$ is a \mathscr{D}-filtration of M in \mathscr{C}.
Now we prove the following results.

- $r(M)$ is independent of the chosen filtration (i.e. r is well defined). Let $M \in \operatorname{Obj} \mathscr{C}$ and suppose that $\left(M_{i}\right)_{i \leq m}$ and $\left(N_{i}\right)_{i \leq n}$ are two \mathscr{D}-filtrations of M in \mathscr{C}. We want to show that

$$
\sum_{i=0}^{m-1}\left[M_{i} / M_{i+1}\right]_{\mathscr{D}}=\sum_{i=0}^{n-1}\left[N_{i} / N_{i+1}\right]_{\mathscr{D}} .
$$

We apply a technique used in the Schreier Refinment theorem, that is, build two new filtrations of M out of $\left(M_{i}\right)_{i \leq m}$ and $\left(N_{i}\right)_{i \leq n}$ that are refinenments, i.e. filters further between each consecutive pair of objetcs in $\left(M_{i}\right)_{i \leq m}$ and $\left(N_{i}\right)_{i \leq n}$, to end up with two filtrations of M of the same length and with the same quotients. To construct the refinments, define

$$
\begin{array}{rlr}
M_{i, j} & =M_{i+1}+M_{i} \cap N_{j} \subseteq M_{i} & \\
N_{i, j} & =N_{j+1}+M_{i} \cap N_{j} & \forall 0 \leq i \leq m, \forall 0 \leq j \leq n .
\end{array}
$$

On particular,

$$
\begin{aligned}
& M_{i, 0}=M_{i+1}+M_{i} \cap N_{0}=M_{i} \\
& M_{i, n}=M_{i+1}+M_{i} \cap N_{n}=M_{i+1} .
\end{aligned}
$$

We then have a filtration :

$$
M_{i+1}=M_{i, n} \subseteq M_{i, n-1} \subseteq \cdots \subseteq M_{i, 1} \subseteq M_{i, 0}=M_{i} .
$$

Similarily, we have another filtration :

$$
N_{j+1}=N_{m, j} \subseteq \cdots \subseteq N_{0, j}=N_{j} .
$$

We define the following two filtrations :

$$
\begin{aligned}
& 0=M_{m, n} \subseteq \cdots \subseteq M_{m, 0}=M_{m-1}=M_{m-1, n} \subseteq \cdots \subseteq M_{0,0}=M \\
& 0=N_{m, n} \subseteq \cdots \subseteq N_{0, n}=N_{n-1}=N_{m, n-1} \subseteq \cdots \subseteq N_{0,0}=N,
\end{aligned}
$$

both of length $m n$. We will respectively note them (M_{\bullet}^{\prime}) and (N_{\bullet}^{\prime}). We need to show that these are \mathscr{D}-filtrations and compare the quotients. We have :

$$
\begin{array}{rlr}
\frac{M_{i, j}}{M_{i, j+1}} & =\frac{M_{i+1}+M_{i} \cap N_{j}}{M_{i+1}+M_{i} \cap N_{j+1}} & \\
& \cong \frac{M_{i} \cap N_{j}}{M_{i+1} \cap N_{j}+M_{i} \cap N_{j+1}} & \text { by Zassenhaus lemma } \\
& \cong \frac{N_{j+1}+M_{i} \cap N_{j}}{N_{j+1}+M_{i+1} \cap N_{j}} & \text { again, by Zassenhaus lemma } \\
& =\frac{N_{i, j}}{N_{i+1, j}} &
\end{array}
$$

So the quotients are the same. In particular, $\left(M_{\bullet}^{\prime}\right)$ is a \mathscr{D}-filtration iff $\left(N_{\bullet}^{\prime}\right)$ is. We need to show that

$$
\frac{M_{i} \cap N_{j}}{M_{i+1} \cap N_{j}+M_{i} \cap N_{j+1}} \in \operatorname{Obj} \mathscr{D} .
$$

By the 3rd isomorphism theorem, we have an exact sequence

$$
0 \longrightarrow \frac{M_{i+1}+M_{i} \cap N_{j}}{M_{i+1}} \longrightarrow \frac{M_{i}}{M_{i+1}} \longrightarrow \frac{M_{i}}{M_{i+1}+M_{i} \cap N_{j}} \longrightarrow 0
$$

We have that $M_{i} / M_{i+1} \in \operatorname{Obj} \mathscr{D}$ (the middle term). So

$$
\begin{aligned}
& \frac{M_{i+1}+M_{i} \cap N_{j}}{M_{i+1}} \in \operatorname{Obj} \mathscr{D} \\
& \Longrightarrow \frac{M_{i} \cap N_{j}}{M_{i+1} \cap N_{j}} \in \operatorname{Obj} \mathscr{D} \quad \text { by the 2nd isomorphism theorem. }
\end{aligned}
$$

No consider

$$
0 \longrightarrow \frac{M_{i+1} \cap N_{j}+M_{i} \cap N_{j+1}}{M_{i+1} \cap N_{j}} \longrightarrow \frac{M_{i} \cap N_{j}}{M_{i+1} \cap N_{j}} \longrightarrow \frac{M_{i} \cap N_{j}}{M_{i+1} \cap N_{j}+M_{i} \cap N_{j+1}} \longrightarrow 0
$$

by the 3 rd isomorphism theorem. The middle term is an object of \mathscr{D}, so

$$
\frac{M_{i+1} \cap N_{j}+M_{i} \cap N_{j+1}}{M_{i+1} \cap N_{j}} \in \operatorname{Obj} \mathscr{D} .
$$

To conclude,

$$
\begin{aligned}
\sum_{i=0}^{m-1}\left[M_{i} / M_{i+1}\right]_{\mathscr{D}} & =\sum_{i=0}^{m-1} \sum_{j=0}^{n-1}\left[M_{i, j} / M_{i, j+1}\right]_{\mathscr{D}} \quad \text { refinments doesn't change the sum } \\
& =\sum_{j=0}^{n-1} \sum_{i=0}^{m-1}\left[N_{i, j} / N_{i+1, j}\right]_{\mathscr{D}} \\
& =\sum_{j=0}^{n-1}\left[N_{j} / N_{j+1}\right]_{\mathscr{D}}
\end{aligned}
$$

So r is well defined.

- r is a generalized rank. Let

be a short exact sequence in \mathscr{C}. To show that $r(M)=r(L)+r(N)$, we build a \mathscr{D}-filtration of M in \mathscr{C} out of \mathscr{D}-filtrations of L and N. Let $\left(L_{i}\right)_{i \leq l}$ and $\left(N_{i}\right)_{i \leq n}$ be such \mathscr{D}-filtrations, both in \mathscr{C}. Since $j\left(L_{0}\right)=j(L)=\operatorname{im} j=\operatorname{ker} p=p^{-1}\left(N_{n}\right)$, we have a filtration

$$
0=j\left(L_{l}\right) \subseteq j\left(L_{l-1}\right) \subseteq \cdots \subseteq j\left(L_{0}\right)=p^{-1}\left(N_{n}\right) \subseteq p^{-1}\left(N_{n-1}\right) \subseteq \cdots \subseteq p^{-1}\left(N_{0}\right)=M
$$

Observe that
$-j\left(L_{i}\right) / j\left(L_{i+1}\right) \cong L_{i} / L_{i+1} \in \operatorname{Obj} \mathscr{D}$, since j is injective,
$-p^{-1}\left(N_{i}\right) / p^{-1}\left(N_{i+1}\right) \cong N_{i} / N_{i+1} \in \operatorname{Obj} \mathscr{D}$.
So it is a \mathscr{D} filtration. We have

$$
\begin{aligned}
r(M) & =\sum_{i=0}^{l-1}\left[j\left(L_{i}\right) / j\left(L_{i+1}\right)\right]_{\mathscr{D}}+\sum_{i=0}^{n-1}\left[p^{-1}\left(N_{i}\right) / p^{-1}\left(N_{i+1}\right)\right]_{\mathscr{D}} \\
& =\sum_{i=0}^{l-1}\left[L_{i} / L_{i+1}\right]_{\mathscr{D}}+\sum_{i=0}^{n-1}\left[N_{i} / N_{i+1}\right]_{\mathscr{D}} \\
& =r(L)+r(N) .
\end{aligned}
$$

So r is a generalized rank.
We now have a unique induced homomorphism

Thus, $\widehat{r}\left([M]_{\mathscr{C}}\right)=r(M)=\sum_{i}\left[M_{i} / M_{i+1}\right]_{\mathscr{D}}$ for any \mathscr{D}-filtration $\left(M_{\bullet}\right)$. We have $\widehat{r}=\hat{\iota}^{-1}$. Indeed :

- $\widehat{r} \circ \widehat{\imath}=\operatorname{id}_{K_{0} \mathscr{D}}$ since

$$
\begin{aligned}
\widehat{r} \circ \widehat{\iota}\left([M]_{\mathscr{D}}\right) & =\widehat{r}\left([M]_{\mathscr{C}}\right) \\
& =[M / 0]_{\mathscr{D}} \\
& =[M]_{\mathscr{D}} .
\end{aligned}
$$

$$
=[M / 0]_{\mathscr{D}} \quad \text { since } 0 \subset M \text { is a } \mathscr{D} \text {-filtration of } M
$$

- Since $\forall M \in \operatorname{Obj} \mathscr{C}$, we can choose any \mathscr{D}-filtration $\left(M_{\bullet}\right)$ of M in \mathscr{C} and calculate

$$
\begin{aligned}
\widehat{\iota} \circ \widehat{r}\left([M]_{\mathscr{C}}\right) & =\widehat{\iota}\left(\sum_{i}\left[M_{i} / M_{i+1}\right]_{\mathscr{D}}\right) \\
& =\sum_{i} \widehat{\iota}\left(\left[M_{i} / M_{i+1}\right]_{\mathscr{D}}\right) \\
& =\sum_{i}\left[M_{i} / M_{i+1}\right]_{\mathscr{C}}
\end{aligned}
$$

$$
=[M]_{\mathscr{C}} \quad \text { by lemma 2.1.20 }
$$

2.1.23 Example. Let $R=\mathbb{Z}, \mathscr{C}$ be the full subcategory of finite abelian groups, and \mathscr{D} be the full subcategory of cyclic groups of prime order, including the trivial group (i.e. the finitely generated simple left \mathbb{Z}-modules $\mathscr{F}(\mathbb{Z}))$. Clearly, $\{0\} \in \operatorname{Obj} \mathscr{D} \subset \operatorname{Obj} \mathscr{C}$, and Iso \mathscr{D}, Iso \mathscr{C} are both sets.

- By the same argument as before, if $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is exact in \mathscr{D}, then either L or N is trivial, and M is isomorphic to the other.
- By basic group theory, any finite abelian group admit a filtration by cyclic groups of prime order.

So, by Dévissage, $K_{0} \mathscr{C} \cong K_{0} \mathscr{D}$. Moreover, by previous example, we have

$$
K_{0} \mathscr{D}=F_{\mathbf{A b}}\{\mathbb{Z} / p \mathbb{Z} \mid p \text { prime }\} \cong F_{\mathbf{A b}}\left\{x_{p} \mid p \text { prime }\right\}
$$

Let's calculate this groupe another way. Recall that if $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is exact in \mathscr{C}, then $B / A \cong C$ and so $|B|=|A||C|$. We thus have a generalized rank

$$
\begin{aligned}
r: \text { Iso } \mathscr{C} & \longrightarrow\left(\mathbb{Q}_{+}^{*}, \cdot\right) \\
A & \longmapsto|A| .
\end{aligned}
$$

By the universal property of $K_{0} \mathscr{C}$, we therefore have

Claim : \widehat{r} is an isomorphism.
Surjectivity : Consider $\frac{c}{d} \in \mathbb{Q}_{+}^{*}$. Then

$$
\begin{aligned}
\widehat{r}([\mathbb{Z} / c \mathbb{Z}]-[\mathbb{Z} / d \mathbb{Z}]) & =\widehat{r}([\mathbb{Z} / c \mathbb{Z}]) \cdot \widehat{r}([\mathbb{Z} / d \mathbb{Z}])^{-1} \\
& =r([\mathbb{Z} / c \mathbb{Z}]) \cdot r([\mathbb{Z} / d \mathbb{Z}])^{-1} \\
& =\frac{c}{d} .
\end{aligned}
$$

Injectivity: Argument by induction over the power of primes in $|A|$.

- If $|A|=p=|B|$ with p prime, then $A \cong \mathbb{Z} / p \mathbb{Z} \cong B$ and so $[A]=[B]$.
- Induction step : suppose that if $|A|=p^{k}=|B|$ with $k<n$, then $[A]=[B]$. Note that if $|A|=p^{n}$, then A has at least one element of order p, whence there exists a injective homomorphism $\mathbb{Z} / p \mathbb{Z} \longrightarrow A$, from which we can derive an exact sequence $0 \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow A \rightarrow A^{\prime} \rightarrow 0$, and $\left|A^{\prime}\right|=p^{n-1}$. Similarily, we have an exact sequence $0 \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow B \rightarrow B^{\prime} \rightarrow 0$, and $\left|B^{\prime}\right|=p^{n-1}$. By induction hypothesis, we have

$$
\begin{aligned}
{[A] } & =[\mathbb{Z} / p \mathbb{Z}]+\left[A^{\prime}\right] \\
& =[\mathbb{Z} / p \mathbb{Z}]+\left[B^{\prime}\right] \\
& =[B] .
\end{aligned}
$$

- For any abelian group A, if $|A|=p_{1}^{k_{1}} \cdots \cdots p_{r}^{k_{r}}=|B|$, then $A \cong A_{1} \oplus \cdots \oplus A_{r}, B \cong$ $B_{1} \oplus \cdots \oplus B_{r}$, where $\left|A_{i}\right|=p_{i}^{k_{i}}=\left|B_{i}\right|$. So

$$
\begin{aligned}
{[A] } & =\left[A_{1}\right]+\cdots+\left[A_{r}\right] \\
& =\left[B_{1}\right]+\cdots+\left[B_{r}\right] \\
& =[B] .
\end{aligned}
$$

2.1.5 The resolution theorem

Yet another tol for simplifying computations of K_{0} by passing to a smaller, less complicated subcategory of ${ }_{R}$ Mod. The key concept :
2.1.24 Definition (Projective resolution). Let $M \in \operatorname{Obj}_{R}$ Mod. A projective resolution of M is an exact sequence in ${ }_{R} \operatorname{Mod}$

where P_{i} is a projective module. The reolution is finite if there exists n such that $P_{i}=0, \forall i>n$. If $P_{i}=0, \forall i>n$ and $P_{n} \neq 0$, then the resolution has length n. The projective dimension of M is :

$$
\operatorname{pd} M= \begin{cases}\infty & \text { if } M \text { doesn't admit any finite projective resolution, } \\ n & \text { the minimum length of a finite projective resolution, if it exists. }\end{cases}
$$

The global dimension of a ring R is

$$
\operatorname{gldim} R=\sup _{M \in \operatorname{Obj}_{R} \operatorname{Mod}} \operatorname{pd} M
$$

Define $\mathscr{P}_{<\infty}(R)$, the full subcategory of $\mathscr{M}(R)$ whose objects are those that have a finite projective dimension.
2.1.25 Theorem (Resolution theorem). For all ring R :

$$
K_{0} \mathscr{P}_{<\infty}(R) \cong K_{0} R,
$$

where $K_{0} R=K_{0} \mathscr{P}(R)$.
Proof. We need two homomorphisms $K_{0} R \longrightarrow K_{0} \mathscr{P}_{<\infty}(R), K_{0} \mathscr{P}_{<\infty}(R) \longrightarrow K_{0} R$ that are inverse to each other. This is equivalent to the existance of generalized ranks Iso $\mathscr{P}(R) \longrightarrow K_{0} \mathscr{P}<\infty(R)$, Iso $\mathscr{P}_{<\infty}(R) \longrightarrow K_{0} R$ such that the induced homomorphisms are mutually inverse. Let us note [M] the class of a R-module M in $K_{0} R$ and $[M]_{\infty}$ the class of M in $K_{0} \mathscr{P}<\infty(R)$.

- Generalized rank Iso $\mathscr{P}(R) \longrightarrow K_{0} \mathscr{P}_{<\infty}(R)$. Remark that $\mathscr{P}(R)$ is a subcategory of $\mathscr{P}_{<\infty}(R)$, si it makes sense to define

$$
\begin{aligned}
\iota: \text { Iso } \mathscr{P}(R) & \longrightarrow K_{0} \mathscr{P}_{<\infty}(R) \\
M & \longmapsto[M]_{\infty} .
\end{aligned}
$$

This is a generalized rank, since a sequence exact in $\mathscr{P}(R)$ is aslo exact in $\mathscr{P}_{<\infty}(R)$. So $[M]_{\infty}=[L]_{\infty}+[N]_{\infty}$ for all exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ in $K_{0} R$. Thus, there exists an induced homomorphism

$$
\begin{gathered}
\hat{\iota}: K_{0} R \longrightarrow K_{0} \mathscr{P}_{<\infty}(R) \\
{[M] \longmapsto[M]_{\infty} .}
\end{gathered}
$$

- Generalized rank Iso $\mathscr{P}_{<\infty}(R) \longrightarrow K_{0} R$. The Euler characteristic is the function

$$
\begin{aligned}
\chi_{R}: \text { Iso } \mathscr{P}_{<\infty}(R) & \longrightarrow K_{0} R \\
M & \longmapsto \sum_{k=0}^{n}(-1)^{k}\left[P_{k}\right]
\end{aligned}
$$

where $0 \rightarrow P_{n} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0$ is a projective resolution of M. We show two points.

1. χ_{R} is well defined, i.e. does not depend of the chosen projective resolution. Let

$$
\begin{aligned}
& 0 \rightarrow P_{n} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0 \\
& 0 \rightarrow Q_{n} \rightarrow \cdots \rightarrow Q_{0} \rightarrow M \rightarrow 0
\end{aligned}
$$

be two projective resolutions of M (where it may be that some P_{i}, Q_{j} are 0). Let us show that
$P_{n} \oplus Q_{n-1} \oplus P_{n-2} \oplus \cdots \oplus\left\{\begin{array}{ll}P_{0} & \text { if } 2 \mid n \\ Q_{0} & \text { otherwise }\end{array} \cong Q_{n} \oplus P_{n-1} \oplus Q_{n-2} \oplus \cdots \oplus \begin{cases}Q_{0} & \text { if } 2 \mid n \\ P_{0} & \text { otherwise }\end{cases}\right.$

If $n=1$, it is the Schanuel's Lemma. Suppose the isomorphism holds $\forall n \leq N$. Consider

The inductive hypothesis is that given K, L two modules and two exact sequences :

we have

$$
K \oplus C_{n} \cong L \oplus D_{n}
$$

where $C_{n}=Q_{n} \oplus P_{n-1} \oplus Q_{n-2} \oplus \cdots$ and $D_{n}=P_{n} \oplus Q_{n-1} \oplus P_{n-2} \oplus \cdots$. It is true if $n=0$ by Schanuel's Lemma. By induction hypothesis, $\operatorname{ker} p_{N} \oplus C_{N} \cong \operatorname{ker} q_{N} \oplus D_{N}$. Now we have an isomorphism

$$
\begin{aligned}
P_{N+1} \oplus C_{N} \cong \operatorname{ker} p_{N} \oplus C_{N} & \\
& =\operatorname{ker} q_{N} \oplus D_{N} \\
& =Q_{N+1} \oplus D_{N} .
\end{aligned}
$$

So $P_{N+1} \oplus C_{N} \cong Q_{N+1} \oplus D_{N}$. To conclude, we have toprove the induction hypothesis for $N+1$. Consider

Again, by inductive hypothesis for N, we have $\operatorname{ker} p_{N} \oplus C_{N} \cong \operatorname{ker} q_{N} \oplus D_{N}$. Now we have short exact segences

$$
\begin{aligned}
& 0 \longrightarrow K \longrightarrow P_{N+1} \longrightarrow \operatorname{ker} p_{N} \longrightarrow 0 \\
& 0 \longrightarrow L \longrightarrow Q_{N+1} \longrightarrow \operatorname{ker} q_{N} \longrightarrow 0
\end{aligned}
$$

whence

By Schanuel's Lemma, we have

$$
\begin{aligned}
K \oplus D_{N+1} & =K \oplus Q_{N+1} \oplus D_{N} \\
& \cong L \oplus P_{N+1} \oplus C_{N} \\
& =L \oplus C_{N+1}
\end{aligned}
$$

Therefore, χ_{R} is well defined.
2. We need to show that for all exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ in $\mathscr{P}_{<\infty}(R)$, we have $\chi_{R}(M)=\chi_{R}(L)+\chi_{R}(N)$. By point 1., we can choose any projective resolution of L and N to calculate $\chi_{R}(L)$ and $\chi_{R}(N)$. So take

$$
\begin{gathered}
0 \rightarrow P_{n} \rightarrow \cdots \rightarrow P_{0} \rightarrow L \rightarrow 0 \\
0 \rightarrow Q_{n} \rightarrow \cdots \rightarrow Q_{0} \rightarrow N \rightarrow 0
\end{gathered}
$$

Apply the Horseshoe Lemma (Exercise set 5) :

By point 1.,

$$
\begin{aligned}
\chi_{R}(M) & =\sum_{k=0}^{n}(-1)^{k}\left[P_{k} \oplus Q_{k}\right] \\
& =\sum_{k=0}^{n}(-1)^{k}\left(\left[P_{k}\right]+\left[Q_{k}\right]\right) \\
& =\chi_{R}(L)+\chi_{R}(N) .
\end{aligned}
$$

Finally, we have an induced homomorphism

$$
\begin{aligned}
\widehat{\chi}_{R}: K_{0} \mathscr{P}_{<\infty}(R) & \longrightarrow K_{0} R \\
{[M]_{\infty} } & \longmapsto \sum_{k=0}^{n}(-1)^{k}\left[P_{k}\right],
\end{aligned}
$$

where $0 \rightarrow P_{n} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0$ is a projective resolution of M.

- We have that $\forall M \in \operatorname{Obj} \mathscr{P}(R)$,

$$
\widehat{\chi}_{R} \circ \widehat{\iota}([M])=\widehat{\chi}_{R}\left([M]_{\infty}\right)
$$

$$
=[M] \quad \text { since } M \text { is projective. }
$$

So $\widehat{\chi}_{R} \circ \widehat{\iota}=\operatorname{id}_{\mathscr{P}(R)}$.

- Let $M \in \operatorname{Obj} \mathscr{P}_{<\infty}(R)$ and let $0 \rightarrow P_{n} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0$ be a projective resolution of M. Then

$$
\widehat{\iota} \circ \widehat{\chi}_{R}\left([M]_{\infty}\right)=\sum_{k=0}^{n}(-1)^{k}\left[P_{k}\right]_{\infty}
$$

Consider

Remark that $\operatorname{pd} K_{i}<\infty, \forall 0 \leq i \leq n-1$. So we have a projective resolution

$$
0 \rightarrow P_{n} \rightarrow \cdots \rightarrow P_{i+1} \rightarrow K_{i} \rightarrow 0
$$

So all objects in the big diagram above are in $\mathscr{P}_{<\infty}(R)$. For all i, we have an exact sequence $0 \rightarrow K_{i} \rightarrow P_{i} \rightarrow K_{i-1} \rightarrow 0$. So

$$
\begin{aligned}
{\left[P_{i}\right]_{\infty} } & =\left[K_{i}\right]_{\infty}+\left[K_{i-1}\right]_{\infty} \\
{\left[P_{n}\right]_{\infty} } & =\left[K_{n-1}\right]_{\infty} \\
{\left[P_{0}\right]_{\infty} } & =\left[K_{0}\right]_{\infty}+[M]_{\infty}
\end{aligned}
$$

So

$$
\widehat{\chi}_{R}\left([M]_{\infty}\right)=\sum_{k=0}^{n}(-1)^{k}\left[P_{k}\right]_{\infty}=[M]_{\infty}
$$

and $\widehat{\chi}_{R} \circ \widehat{\imath}=\operatorname{id}_{\mathscr{P}(R)}$.
2.1.26 Corollary. If gldim $R<\infty$, then $G_{0} R=K_{0} R$, where $G_{0} R=K_{0} \mathscr{M}(R)$.

Proof. We have :

$$
\begin{array}{rlr}
G_{0} R & =K_{0} \mathscr{M}(R) & \\
& =K_{0} \mathscr{P}<\infty(R) & \text { since gldim } R<\infty \\
& \cong K_{0} \mathscr{P}(R) & \\
& =K_{0} R . &
\end{array}
$$

2.1.27 Examples. $\quad 0$ gldim $R=0$ iff R is semi simple, i.e every R module is projective.

1. gldim $R=1$ iff every left ideal if R is projective. For instance, gldim $\mathbb{Z}[\sqrt{-5}]=1$.

2.1.6 Stability

The goal here is to give a different caracterisation of $[M]$ in $K_{0} R$ as a type of equivalence class. Recall that

- $K_{0} R \cong(\text { Iso } \mathscr{P}(R), \oplus)^{\wedge}$,
- if $(S, *)$ is an abelian semigroup, then in $(S, *)^{\wedge}$

$$
[s]=[t] \Longleftrightarrow \exists u \in S \text { such that } s * u=t * u
$$

Apply this to $K_{0} R$ to get

$$
[M]=[N] \Longleftrightarrow \exists P \in \operatorname{Obj} \mathscr{P}(R) \text { such that } M \oplus P \cong N \oplus P
$$

Since P is projective, $\exists Q \in \operatorname{Obj} \mathscr{P}(R)$ such that $P \oplus Q \cong R^{\oplus n}$ is free. Therefore

$$
[M]=[N] \Longleftrightarrow \exists n \geq 0 \text { such that } M \oplus R^{\oplus n} \cong N \oplus R^{\oplus n}
$$

2.1.28 Definitions (Stably isomorphic, equivalent, free). Let $M, N \in \operatorname{Obj}_{R} \operatorname{Mod}$. We say that

- M and N are stably isomorphic is there exists $n \in \mathbb{N}$ such that $M \oplus R^{\oplus n} \cong N \oplus R^{\oplus n}$, and we note $M \cong_{S} N$,
- M and N are stably equivalent is there exists $n, m \in \mathbb{N}$ such that $M \oplus R^{\oplus n} \cong N \oplus R^{\oplus m}$, and we note $M \sim_{S} N$,
- M is stably free if $M \sim_{S} 0$, in other words, if there exists $n, m \in \mathbb{N}$ such that $M \oplus R^{\oplus n} \cong$ $R^{\oplus m}$.

Why is it important for K_{0} ?
2.1.29 Proposition. 1. Every element of $K_{0} R$ is of the form $[P]-\left[R^{\oplus n}\right]$, for some $P \in$ Obj $\mathscr{P}(R), n \in \mathbb{N}$.
2. In $K_{0} R$,

$$
[P]=[Q] \Longleftrightarrow P \cong_{S} Q
$$

3. In $\widetilde{K}_{0} R=K_{0} R /\langle[R]\rangle$, the projective class group,

$$
[[P]]=[[Q]] \Longleftrightarrow P \sim_{S} Q
$$

Proof. 1. Recall that $K_{0} R=(\text { Iso } \mathscr{P}(R), \oplus)^{\wedge}$, and that in a group completion $(S, *)^{\wedge}$, any element is of the form $[s]-[t]$, for some $s, t \in S$. So any element of $K_{0} R$ is of the form $[P]-[Q]$, for some projective modules P and Q. Since Q is projective, there exists another projective module Q^{\prime} sich that $Q \oplus Q^{\prime}=R^{\oplus n}$. So

$$
\begin{aligned}
{[P]-[Q] } & =[P]+\left[Q^{\prime}\right]-\left([Q]+\left[Q^{\prime}\right]\right) \\
& =\left[P \oplus Q^{\prime}\right]-\left[R^{\oplus n}\right]
\end{aligned}
$$

and $P \oplus Q^{\prime}$ is projective.
2. Already done.
3. $P \sim_{S} Q$ iff there exists $m, n \in \mathbb{N}$ such that $P \oplus R^{\oplus m} \cong Q \oplus R^{\oplus n}$. Without loss of generality, $m \leq n$. So

$$
\begin{aligned}
P \sim_{S} Q & \Longleftrightarrow P \cong_{S} Q \oplus R^{\oplus(n-m)} \\
& \Longleftrightarrow[P]=\left[Q \oplus R^{\oplus(n-m)}\right]=[Q]+\left[R^{\oplus(n-m)}\right]=[Q]+(n-m)[R] \quad \text { by } 2 . \\
& \Longleftrightarrow[[P]]=[[Q]] .
\end{aligned}
$$

2.1.30 Notation. Let $\mathscr{F}^{\text {st }}(R)$ be the full subcategory of the finitely generated stably free left R modules.
2.1.31 Remark. We have $\mathscr{F}(R) \subsetneq \mathscr{F}^{\text {st }}(R) \subsetneq \mathscr{P}(R)$. For example :

- This example is due to Kaplansky. Let $R=\mathbb{R}[X, Y, Z] /\left\langle X^{2}+Y^{2}+Z^{2}-1\right\rangle$, and let q : $\mathbb{R}[X, Y, Z] \longrightarrow R$ be the quothent homomorphism. Note $\bar{X}=q(X), \bar{Y}=q(Y), \bar{Z}=q(Z)$. Define the two matrices :

$$
A=(\bar{X} \bar{Y} \bar{Z}), \quad B=\left(\begin{array}{l}
\bar{X} \\
\bar{Y} \\
\bar{Z}
\end{array}\right)
$$

Define

$$
\begin{aligned}
p: R^{\oplus 3} & \longrightarrow R \\
v & \longmapsto A v, \\
s: R & \longrightarrow R^{\oplus 3} \\
r & \longmapsto B r .
\end{aligned}
$$

Then

$$
\begin{aligned}
p \circ s(r) & =A B r \\
& =\left(\bar{X}^{2}+\bar{Y}^{2}+\bar{Z}^{2}\right) r \\
& =1 \cdot r \\
& =r \\
& \Longrightarrow p \circ s=\mathrm{id}_{R} .
\end{aligned}
$$

Consider the following exact sequence that splits

We have $P \oplus R \cong R^{\oplus 3}$, so P is stably free. We will show that P is not free. By contradiction, suppose it is. Since R is commutative, and therefore has an IBN, there exists an isomorphism $f: R^{\oplus 2} \xrightarrow{\cong} P$. Given such a f, there exists an isomorphism

$$
\begin{aligned}
\phi & : R^{\oplus 3} \longrightarrow P \oplus R \\
& \left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \longmapsto f(a, b)+c .
\end{aligned}
$$

On the other hand, the previous exact sequence gives us an isomorphisme

$$
\begin{aligned}
\theta: P \oplus R & \longrightarrow R^{\oplus 3} \\
x+r & \longmapsto x+s(r) .
\end{aligned}
$$

Consider $\theta \circ \phi: R^{\oplus 3} \longrightarrow R^{\oplus 3}$. It is an isomorphism represented by the following invertible matrix :

$$
\left(\begin{array}{lll}
a_{1} & b_{1} & \bar{X} \\
a_{2} & b_{2} & \bar{Y} \\
a_{3} & b_{3} & \bar{Z}
\end{array}\right)
$$

whose determinant is a unit $u \in R$. Wa have a matrix

$$
C=\left(\begin{array}{ccc}
u^{-1} a_{1} & b_{1} & \bar{X} \\
u^{-1} a_{2} & b_{2} & \bar{Y} \\
u^{-1} a_{3} & b_{3} & \bar{Z}
\end{array}\right)
$$

of determinant 1 . Consider $C^{0}\left(\mathbb{S}^{2}, \mathbb{R}\right)$ the ring of continuous functions on \mathbb{S}^{2} with value in \mathbb{R}, and

$$
\begin{aligned}
\psi: \mathbb{R}[X, Y, Z] & \longrightarrow C^{0}\left(\mathbb{S}^{2}, \mathbb{R}\right) \\
X & \longmapsto \operatorname{proj}_{1} \\
Y & \longmapsto \operatorname{proj}_{2} \\
Z & \longmapsto \operatorname{proj}_{3} .
\end{aligned}
$$

Note that $\forall w \in \mathbb{S}^{2}$ we have $\operatorname{proj}_{1}(w)^{2}+\operatorname{proj}_{2}(w)^{2}+\operatorname{proj}_{3}(w)^{2}=1$, so $\operatorname{proj}_{1}^{2}+\operatorname{proj}_{2}^{2}+\operatorname{proj}_{3}^{2}=1$, and so

$$
\begin{aligned}
\psi\left(X^{2}+Y^{2}+Z^{2}-1\right) & =\psi(X)^{2}+\psi(Y)^{2}+\psi(Z)^{2}-1 \\
& =0 \\
& \Longrightarrow\left\langle X^{2}+Y^{2}+Z^{2}-1\right\rangle \subseteq \operatorname{ker} \psi
\end{aligned}
$$

Therefore, there exists a unique $\widehat{\psi}: R \longrightarrow C^{0}\left(\mathbb{S}^{2}, \mathbb{R}\right)$ such that the following diagram commutes

with $\widehat{\psi}(\bar{X})=\operatorname{proj}_{1}, \widehat{\psi}(\bar{Y})=\operatorname{proj}_{2}, \widehat{\psi}(\bar{Z})=\operatorname{proj}_{3}$. Apply $\widehat{\psi}$ to C to get

$$
D=\widehat{\psi}(C)=\left(\begin{array}{ccc}
\widehat{\psi}\left(u^{-1} a_{1}\right) & \widehat{\psi}\left(b_{1}\right) & \operatorname{proj}_{1} \\
\widehat{\psi}\left(u^{-1} a_{2}\right) & \widehat{\psi}\left(b_{2}\right) & \operatorname{proj}_{2} \\
\widehat{\psi}\left(u^{-1} a_{3}\right) & \widehat{\psi}\left(b_{3}\right) & \operatorname{proj}_{3}
\end{array}\right) \in M_{3}\left(C^{0}\left(\mathbb{S}^{2}, \mathbb{R}\right)\right) .
$$

Since $\widehat{\psi}$ is a ring homomorphism, we have $\operatorname{det} D=\widehat{\psi}(\operatorname{det} C)=1$. Let c_{j} be the $j^{\text {th }}$ column vector. We have that $c_{1}(D) \wedge c_{3}(D): \mathbb{S}^{2} \longrightarrow \mathbb{R}^{3}$ is a continuous tangential vector field on \mathbb{S}^{2}. Moreover, it never vanishes since

$$
|\operatorname{det} D|=\left|\left\langle c_{1}(D) \wedge c_{3}(D), c_{2}(D)\right\rangle\right|=1
$$

But this is impossible by Brouwers Hairy Ball theorem. So P is not free, but stably free.

- Let $R=\mathbb{Z} / 6 \mathbb{Z}$. Consider the following exact sequence that splits :

$$
0 \longrightarrow \mathbb{Z} / 3 \mathbb{Z} \longrightarrow \mathbb{Z} / 6 \mathbb{Z} \longrightarrow \mathbb{Z} / 2 \mathbb{Z} \longrightarrow 0
$$

The module $\mathbb{Z} / 2 \mathbb{Z}$ is therefore projective, but not stably free because $\left|\mathbb{Z} / 2 \mathbb{Z} \oplus(\mathbb{Z} / 6 \mathbb{Z})^{n}\right|$ is never a power of 6 , and so $(\mathbb{Z} / 6 \mathbb{Z})^{m} \neq \mathbb{Z} / 2 \mathbb{Z} \oplus(\mathbb{Z} / 6 \mathbb{Z})^{n}, \forall m, n \in \mathbb{N}$.

2.1.7 Multiplicative structure in $K_{0} R$

How to multiply classes of projective module ? The key notion :
2.1.32 Definition (Bilinear map). Let R be a ring. Let $M \in \operatorname{Obj}_{\operatorname{Mod}}^{R}$, $N \in \operatorname{Obj}_{R} \operatorname{Mod}$, and A be an abelian group. A bilinear map $f: M \times N \longrightarrow A$ is a function such that $\forall x, x^{\prime} \in M$, $\forall y, y^{\prime} \in N, \forall r \in R:$

1. $f\left(x+x^{\prime}, y\right)=f(x, y)+f\left(x^{\prime}, y\right)$,
2. $f\left(x, y+y^{\prime}\right)=f(x, y)+f\left(x, y^{\prime}\right)$,
3. $f(x r, y)=f(x, r y)$.
2.1.33 Theorem (Tensor product). Let R be a ring. There is a functor

$$
-\otimes_{R}-: \operatorname{Mod}_{R} \times{ }_{R} \operatorname{Mod} \longrightarrow \mathbf{A b}
$$

such that $\forall M \in \operatorname{Obj} \operatorname{Mod}_{R}, \forall N \in \operatorname{Obj}_{R} \mathbf{M o d}$, there exists a bilinear map

$$
\eta: M \times N \longrightarrow M \otimes_{R} N
$$

such that any other bilinear map $f: M \times N \longrightarrow A$ factors uniquely through η :

The abelian group $M \otimes_{R} N$ is called the tensor product of M and N.
Proof. We give an explicit construction !

- Define

$$
M \otimes_{R} N=F_{\mathbf{A b}}(M \times N) / B
$$

where B is the subgroup of $F_{\mathbf{A b}}(M \times N)$ generated by
$-\left(x+x^{\prime}, y\right)-(x, y)-\left(x^{\prime}, y\right), \forall x, x^{\prime} \in M, \forall y \in N$,
$-\left(x, y+y^{\prime}\right)-(x, y)-\left(x, y^{\prime}\right), \forall x \in M, \forall y, y^{\prime} \in N$,
$-(x r, y)-(x, r y), \forall x \in M, \forall y \in N, \forall r \in R$.

Define η as the composite

$$
\begin{gathered}
M \times N \longrightarrow F_{\mathbf{A b}}(M \times N) \longrightarrow M \otimes_{R} N \\
(x, y) \longmapsto(x, y) \longmapsto x \otimes y
\end{gathered}
$$

η is indeed bilinear. Given $f: M \times N \longrightarrow A$ a bilinear map, consider

and $B \subseteq$ ker \tilde{f} since f is bilinear.

- Given $f: M \longrightarrow M^{\prime}$ and $g: N \longrightarrow N^{\prime}$, define

$$
\begin{aligned}
f \otimes_{R} g: M \otimes_{R} N & \longrightarrow M^{\prime} \otimes_{R} N^{\prime} \\
x \otimes y & \longmapsto f(x) \otimes g(y) .
\end{aligned}
$$

We have

This shows that $f \otimes_{R} g$ is well defined and that it is a homomorphism of groups.
2.1.34 Corollary. Let R, S and T be rings. Then $-\otimes_{S}$ - restricts and corestricts to a functor :

$$
-\otimes_{S}-:{ }_{R} \operatorname{Mod}_{S} \times_{S} \operatorname{Mod}_{T} \longrightarrow{ }_{R} \operatorname{Mod}_{T}
$$

Proof. Given $M \in \operatorname{Obj}_{R} \operatorname{Mod}_{S}, N \in \operatorname{Obj}{ }_{S} \operatorname{Mod}_{T}$, define a left R-action on $M \otimes_{S} N$ by

$$
\begin{aligned}
& \lambda: R \times\left(M \otimes_{S} N\right) \longrightarrow M \otimes_{S} N \\
& (r, x \otimes y)=(r x) \otimes y
\end{aligned}
$$

and a right T-action by

$$
\begin{aligned}
& \rho:\left(M \otimes_{S} N\right) \times R \longrightarrow M \otimes_{S} N \\
& (x \otimes y, t)=x \otimes(y t) .
\end{aligned}
$$

We need to show that λ and ρ are well defined :

1. $r \cdot\left(\left(x+x^{\prime}\right) \otimes y\right)=r \cdot\left(x \otimes y+x^{\prime} \otimes y\right)$,
2. $r \cdot\left(x \otimes\left(y+y^{\prime}\right)\right)=r \cdot\left(x \otimes y+x \otimes y^{\prime}\right)$,
3. $r \cdot((x \cdot s) \otimes y)=r \cdot(x \otimes(s \cdot y))$.
2.1.35 Remark. If R is commutative, and M is a left R-module, we can see M as a (R, R)-bimodule as follows :

$$
x \cdot r=r \cdot x .
$$

It is indeed a (R, R)-bimodule because R is commutative. We can then see $-\otimes_{R}-$ as a functor

$$
\begin{aligned}
& -\otimes_{R}-: \operatorname{Mod}_{R} \times \operatorname{Mod}_{R} \longrightarrow \operatorname{Mod}_{R}, \\
& -\otimes_{R}-:{ }_{R} \operatorname{Mod} \times{ }_{R} \operatorname{Mod} \longrightarrow{ }_{R} \operatorname{Mod} .
\end{aligned}
$$

Here are some important properties of $-\otimes_{R}-$ seen in the exercises sets :

1. Associativity : if $L \in \operatorname{Obj}_{Q} \operatorname{Mod}_{R}, M \in \operatorname{Obj}_{R} \operatorname{Mod}_{S}, N \in{ }_{S} \operatorname{Mod}_{T}$, then

$$
\left(L \otimes_{R} M\right) \otimes_{S} N \cong L \otimes_{R}\left(M \otimes_{S} N\right)
$$

as (Q, T)-bimodules.
2. Commutativity : if R is commutative, and $M, N \in \operatorname{Obj}_{\operatorname{Mod}}^{R}$, then

$$
M \otimes_{R} N \cong N \otimes_{R} M
$$

3. Additivity : if $M_{i} \in \operatorname{Obj}_{\operatorname{Mod}}^{R}$, $\forall i \in I$ and $N_{j} \in \operatorname{Obj}{ }_{R} \operatorname{Mod}, \forall j \in J$, then

$$
\left(\bigoplus_{i \in I} M_{i}\right) \otimes_{R}\left(\bigoplus_{j \in J} N_{j}\right) \cong \bigoplus_{(i, j) \in I \times J}\left(M_{i} \otimes_{R} N_{j}\right) .
$$

4. Unit : if $M \in \operatorname{Obj}_{\operatorname{Mod}}^{R}$ and $N \in \operatorname{Obj}{ }_{R} \operatorname{Mod}$, then

$$
M \otimes_{R} R \cong M, \quad R \otimes_{R} N \cong N
$$

The idea of this proof is that $x \otimes r=x \otimes(r \cdot 1)=(x \cdot r) \otimes 1$.
5. If $M \in \operatorname{Obj}_{\operatorname{Mod}}^{R}$ and $N \in \operatorname{Obj}_{R} \operatorname{Mod}$, then

$$
M \otimes_{R} 0 \cong 0, \quad 0 \otimes_{R} N \cong 0
$$

6. Projectives : if R is commutative and if P and Q are projectives right R-modules, then $P \otimes_{R} Q$ is also projective.
2.1.36 Definition (Semiring). A semiring consists of an abelian semigroup ($S,+, 0$) with a neutral element 0, endowed with an associative multiplication map $*: S \times S \longrightarrow S$ that has a unit 1 and that is distributive over the semigroup structure. It is commutative if $*$ is commutative.
2.1.37 Proposition. If R is commutative, then (Iso $\mathscr{P}(R), \oplus, 0, \otimes_{R}, R$) is a commutative semiring.

Proof. Obvious, with the previous properties.
2.1.38 Proposition. If $(S,+, 0, *, 1)$ is a (commutative) semiring, than $*$ induces a (commutative) ring structure on $(S,+, 0)^{\wedge}$, i.e. we have a lifting of $(-)^{\wedge}: \mathbf{A b S G r p} \longrightarrow \mathbf{A b}$:

Proof. Define $[s][t]=[s * t]$. We just have to show that this multiplication on $(S,+, 0)^{\wedge}$ is well defined.

$$
\begin{aligned}
{[s]=\left[s^{\prime}\right] } & \Longleftrightarrow \exists u \in S \text { such that } s+u=s^{\prime}+u \quad \text { since }(S,+, 0) \text { is abelian } \\
& \Longrightarrow \forall t \in S \quad(s+u) * t=\left(s^{\prime}+u\right) * t \\
& \Longrightarrow s * t+u * t=s^{\prime} * t+u * t \\
& \Longrightarrow[s * t]=\left[s^{\prime} * t\right] .
\end{aligned}
$$

Similarly, $[t]=\left[t^{\prime}\right] \Longrightarrow[s * t]=\left[s * t^{\prime}\right]$. If $*$ is commutative, then $[s][t]=[s * t]=[t * s]=[t][s]$ and so $(S,+, 0, *, 1)^{\wedge}$ is commutative.
2.1.39 Corollary. If R is commutative, then $K_{0} R=\left(\text { Iso } \mathscr{P}(R), \oplus, 0, \otimes_{R}, R\right)^{\wedge}$ is a commutative ring, where

$$
[P][Q]=\left[P \otimes_{R} Q\right]
$$

2.1.40 Example. If R is a commutative PID, then $K_{0} R \cong \mathbb{Z}$ as rings.

2.2 Functoriality of Grothendieck group

The goals here are :

- understand the relation between $K_{0} R$ and $R_{0} S$ with respect to a ring homomorphism ϕ : $R \longrightarrow S$,
- give tools for computing $K_{0} R$ from $K_{0} R_{i}$, where R is "built out of" the R_{i} 's.

2.2.1 Exact functors

Whet you need to get a homomorphism between Grothendieck group :
2.2.1 Definition (Exact functor). Let R and S be rings, and $\mathscr{C} \subseteq \operatorname{Mod}_{R}$ and $\mathscr{D} \subseteq \operatorname{Mod}_{S}$ be full subcategories with 0 -object and only set of isomorphism classes of objects. A functor $F: \mathscr{C} \longrightarrow \mathscr{D}$ is exact if it preserves exact sequences.
2.2.2 Proposition. If $F: \mathscr{C} \longrightarrow \mathscr{D}$ is exact, then it induces a homomorphism $K_{0} F: K_{0} \mathscr{C} \longrightarrow$ $K_{0} \mathscr{D}$.

Proof. Since F preserves exact sequences, we have that $d_{\mathscr{D}} \circ F$: Iso $\mathscr{C} \longrightarrow K_{0} \mathscr{D}$ is a generalized rank. By the universal property of $d_{\mathscr{C}}$, there exist a unique ring homomorphism $K_{0} F: K_{0} \mathscr{C} \longrightarrow K_{0} \mathscr{D}$:

"Exact functors are exactly what you need!"
Prof. K. Hess-Bellwald
17/04/2013
When $\mathscr{C}=\mathscr{P}(R)$ and $\mathscr{D}=\mathscr{P}(S)$, we have :
2.2.3 Proposition. Let $F: \operatorname{Mod}_{R} \longrightarrow \operatorname{Mod}_{S}$ be a functor such that

- $F(M \oplus N) \cong F M \oplus F N$,
- $F R \in \mathscr{P}(S)$.

Then F restricts and corestricts to an exact functor

$$
F: \mathscr{P}(R) \longrightarrow \mathscr{P}(S)
$$

and therefore induces a homomorphism $K_{0} F: K_{0} R \longrightarrow K_{0} S$.
Proof. We need to show that $F P \in \mathscr{P}(S), \forall P \in \mathscr{P}(R)$. We know that there exists $P^{\prime} \in \mathscr{P}(R)$ such that $P \oplus P^{\prime} \cong R^{\oplus n}$, for some $n \in \mathbb{N}$. Thus

$$
\begin{aligned}
F P \oplus F P^{\prime} & \cong F\left(P \oplus P^{\prime}\right) \\
& \cong F\left(R^{\oplus n}\right) \\
& \cong(F R)^{\oplus n} \\
& \in \mathscr{P}(S) .
\end{aligned}
$$

So $F P \in \mathscr{P}(S)$, and F does indeed give rise to $F: \mathscr{P}(R) \longrightarrow \mathscr{P}(S)$. It is exact since every exact sequence in $\mathscr{P}(R)$ splits, and that F preserves \oplus up to isomorphism.

Restruction of scalars

If $\phi: R \longrightarrow S$ is a homomomorphism (!) of rings, then it induces a functor

$$
\begin{aligned}
\phi^{*}: \operatorname{Mod}_{S} & \longrightarrow \operatorname{Mod}_{R} \\
(M, \rho) & \longmapsto\left(M, \rho \circ\left(\operatorname{id}_{M} \times \phi\right)\right) .
\end{aligned}
$$

In particular, since S is a S-module, we can view it as a R-module. The functor ϕ^{*} does not change the underlying abeloan group, only the action. Moreover, if $f:(M, \rho) \longrightarrow\left(M^{\prime}, \rho^{\prime}\right)$ is a homomorphism pf S modules, then

$$
\phi^{*} f:\left(M, \rho \circ\left(\operatorname{id}_{M} \times \phi\right)\right) \longrightarrow\left(M^{\prime}, \rho^{\prime} \circ\left(\operatorname{id}_{M} \times \phi\right)\right)
$$

has the same underlying homomorphism of groups. Since f is a homomorphism of R module, we have

$$
\begin{aligned}
f(s m) & =s f(m), \quad \forall s \in S, \forall m \in M \\
\Longrightarrow f(r m) & =f(\phi(r) m) \\
& =\phi(r) f(m) \\
& =r f(m),
\end{aligned}
$$

and $\phi^{*} f$ is a homomorphism of R-modules.

Consequently, ϕ^{*} preserves exact sequences and is an exact functor. If $\phi^{*} S$ is finitely generated and projective an an R-module, then it restricts and corestricts to an exact functor $\phi^{*}: \mathscr{P}(S) \longrightarrow$ $\mathscr{P}(R)$, and therefore induces an homomorphism

$$
K_{0} \phi^{*}: K_{0} S \longrightarrow K_{0} R .
$$

Not quite what we want to see K_{0} as a functor Ring $\longrightarrow \mathbf{A b} \ldots$
2.2.4 Example. Let $\phi: \mathbb{Z} / 6 \mathbb{Z} \longrightarrow \mathbb{Z} / 2 \mathbb{Z}$ be the quotient homomorphism. Since $\mathbb{Z} / 6 \mathbb{Z} \cong \mathbb{Z} / 2 \mathbb{Z} \oplus$ $\mathbb{Z} / 3 \mathbb{Z}$, it comes that $\mathbb{Z} / 2 \mathbb{Z}$ is finitely generated and projective as a $\mathbb{Z} / 6 \mathbb{Z}$-module. So ϕ induces a homomorphism $K_{0} \phi^{*}: K_{0}(\mathbb{Z} / 2 \mathbb{Z}) \longrightarrow K_{0}(\mathbb{Z} / 6 \mathbb{Z})$.

Extension of scalars

Let $\phi: R \longrightarrow S$ be a ring homomorphism. Define functor

$$
\begin{aligned}
S \otimes_{R}-:{ }_{R} \operatorname{Mod} & \longrightarrow{ }_{S} \operatorname{Mod} \\
M & \longmapsto S \otimes_{R} M \\
f & \longmapsto S \otimes_{R} f=\operatorname{id}_{S} \otimes_{R} f
\end{aligned}
$$

where S is implicitly considered as a (S, R)-bimodule.

- The fact that $S \otimes_{R}$ - preserves direct sum is a special case of additivity (exercise set 7),
- $S \otimes_{R} R \cong S$ is a finitely generated projective S-module.

So there exists a homomorphism

$$
\begin{aligned}
K_{0}\left(S \otimes_{R}-\right): K_{0} R & \longrightarrow K_{0} S \\
{[P] } & \longmapsto\left[S \otimes_{R} P\right] .
\end{aligned}
$$

2.2.5 Notation. $K_{0} \phi=K_{0}\left(S \otimes_{R}-\right)$.
2.2.6 Theorem. With respect to this choice of $K_{0} \phi$,

$$
K_{0}: \mathbf{R i n g} \longrightarrow \mathbf{A b}
$$

is a functor. It restricts and corestricts to a functor

$$
K_{0}: \text { CRing } \longrightarrow \text { CRing. }
$$

Proof. - We will show that $\forall R \xrightarrow{\phi} S \xrightarrow{\psi} T$, we have $K_{0}(\psi \circ \phi)=K_{0} \psi \circ K_{0} \phi$. Let $P \in$ Obj $\mathscr{P}(R)$,

$$
\begin{aligned}
K_{0} \psi \circ K_{0} \phi([P]) & =K_{0} \psi\left(\left[S \otimes_{R} P\right]\right) \\
& =\left[T \otimes_{S}\left(S \otimes_{R} P\right)\right] \\
& =\left[T \otimes_{R} P\right] \\
& =K_{0}(\psi \circ \phi)([P]) .
\end{aligned}
$$

- We will show that for all ring R, we have $K_{0} \mathrm{id}_{R}=\operatorname{id}_{K_{0} R}$. Remark that $\mathrm{id}_{R}^{*} R=R$, with the usual R-module structure. Therefore $R \otimes_{R} M \cong M$, with respect to id_{R}.
If R is a commutative ring, then $K_{0} R$ as also commutative, with $[P][Q]=\left[P \otimes_{R} Q\right]$. Let $\phi: R \longrightarrow S$ is a homomorphism of ring. Then

$$
\begin{aligned}
K_{0} \phi([P]) K_{0} \phi([Q]) & =\left[S \otimes_{R} P\right]\left[S \otimes_{R} Q\right] \\
& =\left[\left(S \otimes_{R} P\right) \otimes_{S}\left(S \otimes_{R} Q\right)\right] \\
& =\left[\left(\left(S \otimes_{R} P\right) \otimes_{S} S\right) \otimes_{R} Q\right] \\
& =\left[S \otimes_{R}\left(P \otimes_{R} Q\right)\right] \\
& =K_{0} \phi([P][Q]) .
\end{aligned}
$$

Tensoring with bimodules

This is a generalisation of the extension of scalars. Let $M \in \operatorname{Obj}{ }_{S} \operatorname{Mod}_{R}$. Then we have a functor

$$
M \otimes_{R}-:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{S} \operatorname{Mod}
$$

that preserves direct sum. Is M is projective and finitely generated, then $M \otimes_{R} R \cong M \in \operatorname{Obj} \mathscr{P}(S)$. Whence $M \otimes_{R}$ - induces a homomorphism

$$
K_{0}\left(M \otimes_{R}-\right): K_{0} R \longrightarrow K_{0} S
$$

Central idempotents

This is a special case of the extension of scalars.
2.2.7 Lemma. Let R be a ring, and $e \in R$ a centran idempotent. Then $e R$ is a ring with neutral element e.

Proof. - er $+e r^{\prime}=e\left(r+r^{\prime}\right) \in e R$,

- $(e r)\left(e r^{\prime}\right)=e r e r^{\prime}=e^{2} r r^{\prime}=e\left(r r^{\prime}\right) \in e R$.

So $e R$ is closed under + and \cdot, inherited by R. Moreover $(e r) e=e(e r)=e^{2} r=e r$, so e is the neutral element of $e R$.

Let

$$
\begin{aligned}
\phi_{e}: R & \longrightarrow e R \\
r & \longmapsto e r .
\end{aligned}
$$

This is a ring homomorphism since

$$
\begin{aligned}
\phi_{e}\left(r r^{\prime}\right) & =e r r^{\prime} \\
& =e^{2} r r^{\prime} \\
& =\operatorname{erer}^{\prime} \\
& =\phi_{e}(r) \phi_{e}\left(r^{\prime}\right) .
\end{aligned}
$$

So we have an induces homomorphism

$$
K_{0} \phi_{e}: K_{0} R \longrightarrow K_{0} e R
$$

$$
[P] \longmapsto\left[e R \otimes_{R}\right]=[e M] \quad \text { (exercise !). }
$$

To illustrate the utility of central idempotents, and as a method for computing $K_{0} R$:
2.2.8 Theorem. $K_{0}\left(R \times R^{\prime}\right) \cong K_{0} R \times K_{0} R^{\prime}$.

Proof. Let $e=(1,0)$ and $e^{\prime}=(0,1)$. It is obvious that they are central idempotents. Moreover

$$
\begin{aligned}
e\left(R \times R^{\prime}\right) & \cong R \\
e^{\prime}\left(R \times R^{\prime}\right) & \cong R^{\prime}
\end{aligned}
$$

There exists homomorphism of ring

$$
\begin{aligned}
\phi_{e} & : R \times R^{\prime} \longrightarrow e\left(R \times R^{\prime}\right) \\
\phi_{e^{\prime}} & : R \times R^{\prime} \longrightarrow e^{\prime}\left(R \times R^{\prime}\right),
\end{aligned}
$$

and therefore group homomorphism

$$
\begin{aligned}
K_{0} \phi_{e}: K_{0}\left(R \times R^{\prime}\right) & \longrightarrow K_{0} e\left(R \times R^{\prime}\right) \\
K_{0} \phi_{e^{\prime}}: K_{0}\left(R \times R^{\prime}\right) & \longrightarrow K_{0} e^{\prime}\left(R \times R^{\prime}\right),
\end{aligned}
$$

from which we get

$$
\begin{aligned}
\alpha=\left(K_{0} \phi_{e}, K_{0} \phi_{e^{\prime}}\right): K_{0}\left(R \times R^{\prime}\right) & \longrightarrow K_{0} e\left(R \times R^{\prime}\right) \times K_{0} e^{\prime}\left(R \times R^{\prime}\right) \\
{[P] } & \longmapsto\left([e P],\left[e^{\prime} P\right]\right) .
\end{aligned}
$$

Claim : this is an isomorphism. Observe that there exists a split exact sequence of ($R \times R^{\prime}$)-modules

So $R \times R^{\prime} \cong e\left(R \times R^{\prime}\right) \oplus e^{\prime}\left(R \times R^{\prime}\right)$. In particular, both $e\left(R \times R^{\prime}\right)$ and $e^{\prime}\left(R \times R^{\prime}\right)$ are finitely generated projective $\left(R \times R^{\prime}\right)$-modules. Therefore ϕ_{e} and $\phi_{e^{\prime}}$ induce homomorphism

$$
\begin{aligned}
K_{0} \phi_{e}^{*}: K_{0} e\left(R \times R^{\prime}\right) & \longrightarrow K_{0}\left(R \times R^{\prime}\right) \\
K_{0} \phi_{e^{\prime}}^{*}: K_{0} e^{\prime}\left(R \times R^{\prime}\right) & \longrightarrow K_{0}\left(R \times R^{\prime}\right) .
\end{aligned}
$$

Claim : $K_{0} \phi_{e}^{*} \oplus K_{0} \phi_{e^{\prime}}^{*}$ is the inverse of $\left(K_{0} \phi_{e}, K_{0} \phi_{e^{\prime}}\right)$. We have a homomorphism

$$
\begin{aligned}
\left.\beta:\left(K_{0} e\left(R \times R^{\prime}\right)\right) \times K_{0} e^{\prime}\left(R \times R^{\prime}\right)\right) & \longrightarrow K_{0}\left(R \times R^{\prime}\right) \\
([M],[N]) & \longmapsto K_{0} \phi_{e}^{*}([M])+K_{0} \phi_{e^{\prime}}^{*}([N]) .
\end{aligned}
$$

- We show that $\beta \circ \alpha=\operatorname{id}_{K_{0}\left(R \times R^{\prime}\right)}$. Let $[M] \in K_{0}\left(R \times R^{\prime}\right)$. We have

$$
\begin{aligned}
\beta \circ \alpha([M]) & =\beta\left(\left[e\left(R \times R^{\prime}\right) \otimes_{R \times R^{\prime}} M\right],\left[e^{\prime}\left(R \times R^{\prime}\right) \otimes_{R \times R^{\prime}} M\right]\right) \\
& =\left[e\left(R \times R^{\prime}\right) \otimes_{R \times R^{\prime}} M\right]+\left[e^{\prime}\left(R \times R^{\prime}\right) \otimes_{R \times R^{\prime}} M\right] \\
& =\left[\left(e\left(R \times R^{\prime}\right) \otimes_{R \times R^{\prime}} M\right) \oplus\left(e^{\prime}\left(R \times R^{\prime}\right) \otimes_{R \times R^{\prime}} M\right)\right] \\
& =\left[\left(e\left(R \times R^{\prime}\right) \oplus e^{\prime}\left(R \times R^{\prime}\right)\right) \otimes_{R \times R^{\prime}} M\right] \\
& =\left[\left(R \times R^{\prime}\right) \otimes_{R \times R^{\prime}} M\right] \\
& =[M] .
\end{aligned}
$$

- Conversly, il M is an $e\left(R \times R^{\prime}\right)$-module, then $e M=M$ since e is the neutral element of $e\left(R \times R^{\prime}\right)$. Similarly, if M^{\prime} is an $e^{\prime}\left(R \times R^{\prime}\right)$-module, then $e^{\prime} M^{\prime}=M^{\prime}$. So

$$
\begin{aligned}
\alpha \circ \beta\left([M],\left[M^{\prime}\right]\right)= & \alpha\left(\left[\phi_{e}^{*} M\right]+\left[\phi_{e^{\prime}}^{*} M^{\prime}\right]\right) \\
= & \left(\left[e\left(R \times R^{\prime}\right) \otimes_{R \times R^{\prime}} \phi_{e}^{*} M\right],\left[e^{\prime}\left(R \times R^{\prime}\right) \otimes_{R \times R^{\prime}} \phi_{e} M\right]\right) \\
& +\left(\left[e\left(R \times R^{\prime}\right) \otimes_{R \times R^{\prime}} \phi_{e^{\prime}}^{*} M^{\prime}\right],\left[e^{\prime}\left(R \times R^{\prime}\right) \otimes_{R \times R^{\prime}} \phi_{e^{\prime}} M^{\prime}\right]\right) \\
= & \left([e M],\left[e^{\prime} M\right]\right)+\left(\left[e M^{\prime}\right],\left[e^{\prime} M^{\prime}\right]\right) \\
= & ([M], 0)+\left(0,\left[M^{\prime}\right]\right) \\
= & \left([M],\left[M^{\prime}\right]\right),
\end{aligned}
$$

since $e^{\prime} M=e^{\prime} e M=0 M=0$.
So

$$
\begin{aligned}
K_{0}\left(R \times R^{\prime}\right) & \cong K_{0} e\left(R \times R^{\prime}\right) \times K_{0} e^{\prime}\left(R \times R^{\prime}\right) \\
& \cong K_{0} R \times K_{0} R^{\prime}
\end{aligned}
$$

2.3 Localization

Il this section, all rings are commutative. The idea here is to simplify a ring R by looking at it "one prime (ideal) at a time". We'll try to "invert" articicially as many elements as possible so that we get something close to a field. We know that $K_{0} \mathbb{K} \cong \mathbb{Z}$ as rongs when \mathbb{K} is a field. We'll try to make R local, i.e. with only one maximal ideal. It turns out that $K_{0} R$ is easy to calculate if that case. In exercise set 10 , we'll see examples of local rings, computation of their K_{0} and determine when localization produces local ring. In class, we'll see the theory of localization ant its importance for K-theory.

Localization is defined by a universal property :
2.3.1 Definition (Localization). Let R be a commutative ring, and $S \subseteq R$ ba a subset. A localization of R away from S consists of a ring R^{\prime} and a ring homomorphism $\phi: R \longrightarrow R^{\prime}$ such that

- $\phi(s)$ is invertible in $R^{\prime}, \forall s \in S$,
- $\forall \psi: R \longrightarrow R^{\prime \prime}$ that satisfies the previous condition, $\exists!\widehat{\psi}: R^{\prime} \longrightarrow R^{\prime \prime}$ such that the following
diagram commutes :

2.3.2 Remark. Sonce this is defined by a universal property, if the localization exists, it is unique.
2.3.3 Notation. We note $\iota_{S}=\phi$ and $S^{-1} R=R^{\prime}$.

We want to invert elements of S. Wo elements of $S^{-1} R$ should look like $\frac{r}{s}$, as ine the construction of the quotient field of a domain.
2.3.4 Theorem. The localization always exists.

Proof. We give an explicit construction! Let $X=\left\{x_{s} \mid s \in S\right\}$. Consider $R[X]$, the molynomial ring on X with coefficients in R (here, we need R to be commutative). Define

$$
J_{S}=\left\langle s x_{s}-1 \mid s \in S\right\rangle
$$

Let ι_{S} be the following composite :

$$
R \xrightarrow{j} R[X] \xrightarrow{q} R[X] / J_{S}
$$

We have to check that is satisfies the required properties.

- If $s \in S$, than $\iota_{S}(s)$ is invertible in $R[X] / J_{S}$ since

$$
\begin{aligned}
{\left[x_{s}\right][s] } & =\left[s x_{s}\right] \\
& =[1] .
\end{aligned}
$$

- If $\psi: R \longrightarrow R^{\prime \prime}$ is a ring homomorphism such that $\psi(s)$ is invertible in $R^{\prime}, \forall s \in S$, then consider

with $\widetilde{\psi}\left(x_{s}\right)=\psi(s)^{-1}$. Since

$$
\begin{aligned}
\widetilde{\psi}\left(s x_{s}-1\right) & =\widetilde{\psi}(s) \widetilde{\psi}\left(x_{s}\right)-\widetilde{\psi}(1) \\
& =\psi(s) \psi(s)^{-1}-1 \\
& =0
\end{aligned}
$$

we have that $\operatorname{ker} p=J_{S} \subseteq \operatorname{ker} \widetilde{\psi}$.
2.3.5 Remark. If $0 \in S$, then in $S^{-1} R$ we have $\left[x_{0}\right]=[0]^{-1}$. So

$$
\begin{aligned}
{[0] } & =\left[0 x_{0}\right] \\
& =[0]\left[x_{0}\right] \\
& =[1] \\
& \Longrightarrow S^{-1} R=\{0\} .
\end{aligned}
$$

What happens if S contains zero divisors?
2.3.6 Notation. For any $S \subseteq R$, let \bar{S} be the multiplicative closure of S, i.e.

$$
\bar{S}=\left\{s_{1} \cdots s_{n} \mid n \in \mathbb{N}, s_{i} \in S, \forall 1 \leq i \leq n\right\} .
$$

2.3.7 Proposition. Let R be a commutative ring and $S \subseteq R$.

1. We have

$$
\text { ker } \iota_{S}=\{r \in R \mid \exists \bar{s} \in \bar{S} \text { such that } r \bar{s}=0\} .
$$

In particular, if R doesn't contain zero divisor, then ι_{S} is an embedding.
2. (A more manageable description of $S^{-1} R$) : $\forall \gamma \in S^{-1} R, \exists r \in R, \exists \bar{s} \in \bar{S}$ (not necessarly unique) such that

$$
\gamma=\iota_{S}(\bar{s})^{-1} \iota_{S}(r) .
$$

Proof. 1.
〇: We have

$$
\begin{aligned}
0 & =\iota_{S}(0) \\
& =\iota_{S}(\bar{s} r) \\
& =\iota_{S}(\bar{s}) \iota_{S}(r)
\end{aligned}
$$

So

$$
\begin{aligned}
0 & =\iota_{S}(\bar{s})^{-1} 0 \\
& =\iota_{S}(\bar{s})^{-1} \iota_{S}(\bar{s}) \iota_{S}(r) \\
& =\iota_{S}(r) \\
& \Longrightarrow r \in \operatorname{ker} \iota_{S} .
\end{aligned}
$$

$\subseteq: \quad$ Let $r \in \operatorname{ker} \iota_{S}$.

$$
\begin{aligned}
r \in \operatorname{ker} \iota_{S} & \Longrightarrow \iota_{S}(r)=0 \\
& \Longrightarrow r \in J_{S} \\
& \Longrightarrow \exists s_{1}, \ldots, s_{n} \in S, \exists p_{1}, \ldots, p_{n} \in R[X] \text { such that } r=\sum_{i=1}^{n} p_{i} \cdot\left(s_{1} x_{s}-1\right) .
\end{aligned}
$$

So in that case, it is enough to consider $S^{\prime}=\left\{s_{1}, \ldots, s_{n}\right\} \subseteq S$. Since $J_{S^{\prime}} \subseteq J_{S}$, there exists a ring homomorphism (quotient map)

Moreover, $r \in \operatorname{ker} \iota_{S^{\prime}}$ since $r \in J_{S^{\prime}}$. Let $\bar{s}=\prod_{i=1}^{n} s_{i}$. In the exercise set, we have shown that $\left(S^{\prime}\right)^{-1} R \cong\{\bar{s}\}^{-1} R$. Since $r \in \operatorname{ker} \iota_{S^{\prime}}=\operatorname{ker} \iota_{\{\bar{s}\}}$, we have $r \in\left\langle\bar{s} x_{\bar{s}}-1\right\rangle$, i.e. $\exists p \in R\left[x_{\bar{s}}\right]$ such that

$$
r=p\left(x_{\bar{s}}\right) \cdot\left(\bar{s} x_{\bar{s}}-1\right)
$$

Write $p\left(x_{\bar{s}}\right)=\sum_{i=0}^{n} a_{i} x_{\bar{s}}^{i}$, with $a_{i} \in R$. Then

$$
\begin{aligned}
r & =p\left(x_{\bar{s}}\right) \cdot\left(\bar{s} x_{\bar{s}}-1\right) \\
& =-a_{0}+\left(a_{0} \bar{s}-a_{1}\right) x_{\bar{s}}+\left(a_{1} \bar{s}-a_{2}\right) x_{\bar{s}}^{2}+\cdots+\left(a_{n-1} \bar{s}-a_{n}\right) x_{\bar{s}}^{n}+a_{n} \bar{s} x_{\bar{s}}^{n+1}
\end{aligned}
$$

Thus, $r=-a_{0}, a_{i} \bar{s}-a_{i+1}=0, \forall 0 \leq i \leq n-1$, and $a_{x} \bar{s}=0$. So $a_{i+1}=a_{i} \bar{s}$, and $r \bar{s}^{n+1}=a_{n} \bar{s}=0$. Since $\bar{s}^{n+1}=0$, we have the inclusion.
2. Let $R^{\prime}=\left\{\iota_{S}(\bar{s})^{-1} \iota_{S}(r) \mid \bar{s} \in \bar{S}, r \in R\right\} \subseteq S^{-1} R$. We want to show that $R^{\prime}=S^{-1} R$. First, note that R^{\prime} is a subring of $S^{-1} R$. Indeed :

- $\left(\iota_{S}(\bar{s})^{-1} \iota_{S}(r)\right)\left(\iota_{S}\left(\bar{s}^{\prime}\right)^{-1} \iota_{S}\left(r^{\prime}\right)\right)=\iota_{S}\left(\overline{s s}^{\prime}\right)^{-1} \iota_{S}\left(r r^{\prime}\right)$, and $\overline{s s}^{\prime} \in \bar{S}$,
- think of it as fractions:

$$
\begin{aligned}
\left(\iota_{S}(\bar{s})^{-1} \iota_{S}(r)\right)+\left(\iota_{S}\left(\bar{s}^{\prime}\right)^{-1} \iota_{S}\left(r^{\prime}\right)\right) & =\iota_{S}\left(\overline{s s}^{\prime}\right)^{-1}\left(\iota_{S}\left(\bar{s}^{\prime} r\right)+\iota_{S}\left(\bar{s} r^{\prime}\right)\right) \\
& =\iota_{S}\left(\overline{s s^{\prime}}\right)^{-1} \iota_{S}\left(\bar{s} r^{\prime}+\bar{s} r^{\prime}\right)
\end{aligned}
$$

and $\bar{s} r^{\prime}+\bar{s} r^{\prime} \in R$.
So R^{\prime} is indeed a subring. Consider

We have $j \circ \widehat{\iota^{\prime}}=\mathrm{id}_{S^{-1} R}$, so j is a surjection, and $R^{\prime} \cong S^{-1} R$.

Here is a sketch of a "fraction" approach to localization. It generalizes more easily to non commutative rings. Define

$$
S^{-1} R=(R \times S) / \sim,
$$

where

$$
(r, s) \sim\left(r^{\prime}, s^{\prime}\right) \Longleftrightarrow \exists t \in S \text { such that } t\left(r s^{\prime}-r^{\prime} s\right)=0
$$

Let $\frac{r}{s}=[(r, s)]$. We have

$$
\begin{aligned}
\frac{r}{s}+\frac{r^{\prime}}{s^{\prime}} & =\frac{r s^{\prime}+r^{\prime} s}{s s^{\prime}} \\
\frac{r}{s} \cdot \frac{r^{\prime}}{s^{\prime}} & =\frac{r r^{\prime}}{s s^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
\iota_{S}: R & \longrightarrow S^{-1} R & \\
r & \longmapsto \frac{r s}{s} & \text { for some } s \in S
\end{aligned}
$$

Then, $\iota_{S}(s)$ is invertible, with inverse $\frac{s}{s^{2}}$. We have the universal property :

with $\widehat{\psi}\left(\frac{r}{s}\right)=\psi(s)^{-1} \psi(r)$.
2.3.8 Examples. $\quad 1$. If \mathfrak{p} is a prime ideal of R, then we note $R_{\mathfrak{p}}=(R \backslash \mathfrak{p})^{-1} R$ (R localized at \mathfrak{p}). If $R=\mathbb{Z}, p \in \mathbb{Z}$ is a prime number, then $p \mathbb{Z}$ is a prime ideal. We note $\mathbb{Z}_{(p)}=\mathbb{Z}_{p \mathbb{Z}}$ (the ring of integers localized at p).
2. Choose $s \in R$. Then $R\left[\frac{1}{s}\right]=\{s\}^{-1} R=\left\{s, s^{2}, \ldots\right\}^{-1} R$ (R localized away from s). For example, if $R=\mathbb{Z}$ and if $p \in \mathbb{Z}$ is a prime number, then $\mathbb{Z}\left[\frac{1}{p}\right]$ is the localization of \mathbb{Z} away from p.

What can we say about $K_{0} \iota_{S}: K_{0} R \longrightarrow K_{0} S^{-1} R$? We'll compute ker $K_{0} \iota_{S}$. For that, we need to understand $K_{0} \iota_{S}([P])=\left[S^{-1} R \otimes_{R} P\right]$, at least for $P \in \operatorname{Obj} \mathscr{P}(R)$.
2.3.9 Notation. If M is a R-module, then $S^{-1} M=S^{-1} R \otimes_{R} M \in \operatorname{Obj}_{S^{-1} R} \operatorname{Mod}$.
2.3.10 Remark. $S^{-1} M$ also satisfies a universal property, like that satisfied by $S^{-1} R$ (exercise !).
2.3.11 Lemma. Let $M \in \operatorname{Obj}_{R} \operatorname{Mod}$. Consider the homomorphism of R-modules given by

$$
\begin{aligned}
\iota_{S} \otimes_{R} \operatorname{id}_{M}: R \otimes_{R} M \cong M & S^{-1} R \otimes_{R} M=S^{-1} M \\
& m \longmapsto 1 \otimes m
\end{aligned}
$$

Then

$$
\operatorname{ker}\left(\iota_{S} \otimes_{R} \operatorname{id}_{M}\right)=\{m \in M \mid \exists \bar{s} \in \bar{S} \text { such that } \bar{s} m=0\} .
$$

Proof. Exercise. This is slightly more technical than the calculation of $\operatorname{ker} \iota_{S} \ldots$
To better understand what the elements of $S^{-1} M$ are
2.3.12 Lemma. 1. Wa have

$$
S^{-1} M=\left\{\iota_{S}(\bar{s})^{-1} \otimes m \mid \bar{s} \in \bar{S}, m \in M\right\}
$$

where $\left(\iota_{S}\left(\bar{s}_{1}\right)^{-1} \otimes m_{1}\right)+\left(\iota_{S}\left(\bar{s}_{2}\right)^{-1} \otimes m_{2}\right)=\iota_{S}\left(\bar{s}_{1}, \bar{s}_{2}\right)^{-1} \otimes\left(\bar{s}_{2} m_{1}+\bar{s}_{1} m_{2}\right)$. Think of addition of fractions.
2. $\iota_{S}\left(\bar{s}_{1}\right)^{-1} \otimes m_{1}=\iota_{S}\left(\bar{s}_{2}\right)^{-1} \otimes m_{2}$ in $S^{-1} M$ iff $\exists \bar{s} \in \bar{S}$ such that $\bar{s}\left(\bar{s}_{2} m_{1}-\bar{s}_{1} m_{2}\right)=0$ in M.

Proof. 1. We have $S^{-1} M=S^{-1} R \otimes_{R} M$. Its typical elements are of the form

$$
\begin{aligned}
\sum_{i=1}^{n}\left(\iota_{S}\left(\bar{s}_{i}\right)^{-1} \iota_{S}\left(r_{i}\right)\right) \otimes m_{i} & =\sum_{i=1}^{n} \iota_{S}\left(\bar{s}_{i}\right)^{-1} \otimes\left(\iota_{S}\left(r_{i}\right) m_{i}\right) \\
& =\iota_{S}\left(\bar{s}_{1} \cdots \bar{s}_{n}\right)^{-1} \otimes\left(\sum_{i=1}^{n} \bar{s}_{1} \cdots \widehat{\bar{s}}_{i} \cdots \bar{s}_{n} \cdot r_{i} m_{i}\right) .
\end{aligned}
$$

2. We have :

$$
\begin{aligned}
\iota_{S}\left(\bar{s}_{1}\right)^{-1} \otimes m_{1}=\iota_{S}\left(\bar{s}_{2}\right)^{-1} \otimes m_{2} \text { in } S^{-1} M & \Longleftrightarrow \iota_{S}\left(\bar{s}_{1}\right)^{-1} \otimes m_{1}-\iota_{S}\left(\bar{s}_{2}\right)^{-1} \otimes m_{2}=0 \text { in } S^{-1} M \\
& \Longleftrightarrow \iota_{S}\left(\bar{s}_{1} \bar{s}_{2}\right)^{-1} \otimes\left(\bar{s}_{2} m_{1}-\bar{s}_{1} m_{2}\right)=0 \text { in } S^{-1} M \\
& \Longleftrightarrow \underbrace{1 \otimes\left(\bar{s}_{2} m_{1}-\bar{s}_{1} m_{2}\right)}_{=\left(\iota_{S} \otimes_{R} \mathrm{id}_{M}\right)\left(\bar{s}_{2} m_{1}-\bar{s}_{1} m_{2}\right)}=0 \text { in } S^{-1} M \\
& \Longleftrightarrow \exists \bar{s} \in \bar{S} \text { such that } \bar{s}\left(\bar{s}_{2} m_{1}-\bar{s}_{1} m_{2}\right)=0 \text { in } M
\end{aligned}
$$

2.3.13 Properties. 1. The functor $S^{-1} R \otimes_{R}-:{ }_{R} \operatorname{Mod} \longrightarrow S_{S^{-1} R} \operatorname{Mod}$ is exact, i.e. if $0 \rightarrow$ $L \rightarrow M \rightarrow N \rightarrow 0$ is exact in ${ }_{R}$ Mod, then $0 \rightarrow S^{-1} L \rightarrow S^{-1} M \rightarrow S^{-1} N \rightarrow 0$ is exact in $S^{-1}{ }_{R}$ Mod. We say that $S^{-1} R$ is a flat R-module.
2. If $M \in \operatorname{Obj} \mathscr{M}(R)$, then $S^{-1} M=0$ (we say that M is an S-toreion module) iff $\exists \bar{s} \in \bar{S}$ such that $\bar{s} M=\{0\}$.
3. (Realizability of $S^{-1} R$-modules, or surjectivity of $S^{-1} R \otimes_{R}-$ up to isomorphism) For all $N \in \operatorname{Obj} \mathscr{M}\left(S^{-1} R\right), \exists M \in \operatorname{Obj} \mathscr{M}(R)$ such that $S^{-1} M \cong N$.
4. (Realizability of isomorphisms between $S^{-1} R$-modules, or uniqueness of realizability of $S^{-1} R$ modules) Let $M, N \in \operatorname{Obj} \mathscr{M}(R)$ such that $\forall s \in S, s$ acts injectively on M and N. Then $S^{-1} M \cong S^{-1} N$ iff $\exists N^{\prime} \leq N$ such that

- $N^{\prime} \cong M$,
- N / N^{\prime} is an S-torsion module, i.e. $S^{-1}\left(N / N^{\prime}\right)=0$.

We say that M and N are isomorphic up to S-torsion.
Proof. 1. In exercise set, we showed that if $0 \rightarrow L \xrightarrow{j} M \xrightarrow{p} N \rightarrow 0$ is exact in ${ }_{R}$ Mod, then $S^{-1} L \stackrel{S^{-1} j}{\rightarrow} S^{-1} M S S^{S^{-1} p^{-1}} N \rightarrow 0$ is exact in ${ }_{S^{-1} R} \operatorname{Mod}$ (property of the tensor product \otimes_{R}). We have to show that $S^{-1} j=\operatorname{id}_{S^{-1} R} \otimes_{R} j$ is injective. Suppose that $\iota_{S}(\bar{s})^{-1} \otimes l \in \operatorname{ker} S^{-1} j$. Then $\iota_{S}(\bar{s})^{-1} \otimes j(l)=0=\iota_{S}(\bar{s})^{-1} \otimes 0$. So, by lemma 2.3.12, we know that $\exists \bar{s}^{\prime} \in \bar{S}$ such that $\bar{s}^{\prime} \bar{s} j(l)=0$. But

$$
\begin{aligned}
0 & =\bar{s}^{\prime} \bar{s} j(l) \\
& =j\left(\bar{s}^{\prime} \bar{s} l\right) \\
\Longrightarrow \bar{s}^{\prime} \bar{s} l & =0,
\end{aligned}
$$

since j is injective. By lemma 2.3.11 $l \in \operatorname{ker}\left(\iota_{S} \otimes_{R} \operatorname{id}_{L}\right)$, i.e. $1 \otimes l=0$ and so $\iota_{S}(\bar{s})^{-1} \otimes l=0$. So $\operatorname{ker} S^{-1} j=\{0\}$, and $S^{-1} j$ is injective.
2.
$\Longrightarrow: ~ I f ~ \bar{s} M=\{0\}$, then $\operatorname{ker}\left(\iota_{S} \otimes_{R} \operatorname{id}_{M}\right)=M$, by lemma 2.3.11, and so $S^{-1} M=0$. More explicitely, if $\bar{s} m=0$, then

$$
\begin{aligned}
1 \otimes m & =\left(\iota_{S}(\bar{s})^{-1} \iota_{S}(\bar{s})\right) \otimes m \\
& =\iota_{S}(\bar{s})^{-1} \otimes\left(\iota_{S}(\bar{s}) m\right) \\
& =0 \\
\Longrightarrow \iota_{S}\left(\bar{s}^{\prime}\right)^{-1} \otimes m & =\iota_{S}\left(\bar{s}^{\prime}\right)(1 \otimes m) \\
& =0 .
\end{aligned}
$$

Remark that we don't actually need M to be finitely generated.
$\Longleftarrow: ~ S u p p o s e ~ M \in \operatorname{Obj} \operatorname{cal} M M(R)$ and that $S^{-1} M=0$, and so that $1^{\circ} x m=0$ in $S^{-1} M$, $\forall m \in M$, i.e. $M=\operatorname{ker}\left(\iota_{S} \otimes_{R} \operatorname{id}_{M}\right)$. Since M is finitely generated, $\exists x_{1}, \ldots, x_{n} \in M$ sich that $M=\sum_{i=1}^{n} R x_{i}$. In particular, $x_{i} \in \operatorname{ker}\left(\iota_{S} \otimes_{R} \mathrm{id}_{M}\right)$. By lemma 2.3.11 $\exists \bar{s}_{i} \in \bar{S}$ such that $\bar{s}_{i} x_{i}=0$. Let $\bar{s}=\bar{s}_{1} \cdots \bar{s}_{n}$. Then $\bar{s} x_{i}=0$ since R is commutative, and so $\bar{s} M=\{0\}$.
3. Let $N \in \mathscr{M}\left(S^{-1} R\right)$. Since N is finitely generated, $\exists x_{1}, \ldots, x_{n} \in N$ such that $N=\sum_{i=1}^{n} S^{-1} R x_{i}$. Recall that since $\iota_{S}: R \longrightarrow S^{-1} R$ is a homomorphism of ring, there exists a functor $\iota_{S}^{*}:{ }_{R} \operatorname{Mod} \longrightarrow{ }_{S^{-1} R}$ Mod. Ler $M=\sum_{i=1}^{n} R x_{i}$ be a submodule ob $\iota_{S}^{*} N$. Then

$$
\begin{aligned}
S^{-1} M & =S^{-1} R \otimes_{R} M \\
& =S^{-1} R \otimes_{R} \sum_{i=1}^{n} R x_{i} \\
& =\left\{\iota_{S}(\bar{s})^{-1} \otimes \sum_{i=1}^{n} r_{i} x_{i} \mid \bar{s} \in \bar{S}, r_{i} \in R\right\} \\
& =\left\{\sum_{i=1}^{n}\left(\iota_{S}(\bar{s})^{-1} r_{i} \otimes x_{i}\right) \mid \bar{s} \in \bar{S}, r_{i} \in R\right\} .
\end{aligned}
$$

Then $S^{-1} N=\left\{\sum_{i=1}^{n}\left(\iota_{S}\left(\bar{s}_{i}\right)^{-1} r_{i} \otimes x_{i}\right) \mid \bar{s}_{i} \in \bar{S}, r_{i} \in R\right\}$. By using fraction formula for addition in $S^{-1} R$, we can convert any element in $S^{-1} N$ into one of the form in $S^{-1} R \otimes_{R} M$ (micro-exercise). So $S^{-1} R \otimes_{R} M \cong N$.
4.
\Longrightarrow : Let x_{1}, \ldots, x_{n} be generators of M, i.e. $M=\sum_{i=1}^{n} R x_{i}$. Since $s m \neq 0, \forall m \in M \backslash\{0\}$, we have that $\operatorname{ker}\left(\iota_{S} \otimes_{R} \operatorname{id}_{M}\right)=\{0\}$. We have

$$
\begin{gathered}
M=\sum_{i=1}^{n} \frac{\alpha}{\text { restr. / corestr. of } \alpha} \sum_{i=1}^{n} R \alpha\left(x_{i}\right) \\
\iota_{S} \otimes_{R} \operatorname{id}_{M} \int_{\downarrow} \int_{x_{i} \longmapsto \alpha\left(x_{i}\right)} S^{-1} N
\end{gathered}
$$

We have that $\alpha\left(x_{i}\right) \in S^{-1} N$ implies that $\exists \bar{s}_{i} \in \bar{S}$ and $\exists y_{i} \in N$ such that $\alpha\left(x_{i}\right)=$ $\iota_{S}\left(\bar{s}_{i}\right)^{-1} \otimes y_{i}$. Let $\bar{s}=\bar{s}_{1} \cdots \bar{s}_{n}$. Then $\alpha\left(x_{i}\right)=\iota_{S}(\bar{s})^{-1} \otimes\left(\bar{s}_{1} \cdots \hat{\bar{s}}_{i} \cdots \bar{s}_{n} y_{i}\right)$. Now, there
exist an isomorphism

$$
\begin{gathered}
\bar{s} \cdot-: \sum_{i=1}^{n} R \alpha\left(x_{i}\right) \leq S^{-1} N \longrightarrow \sum_{i=1}^{n} R y_{i}=N^{\prime} \leq N \\
\alpha\left(x_{i}\right) \longmapsto \bar{s} \alpha\left(x_{i}\right)=y_{i} .
\end{gathered}
$$

So $M \cong \sum_{i=1}^{n} R \alpha\left(x_{i}\right) \cong N^{\prime}$. Finally, consider the exact sequence $0 \rightarrow N^{\prime} \hookrightarrow N \rightarrow$ $N / N^{\prime} \rightarrow 0$ of R-modules, then apply $S^{-1} R \otimes_{R}-$ to get $0 \rightarrow S^{-1} N^{\prime} \rightarrow S^{-1} N \rightarrow$ $S^{-1}\left(N / N^{\prime}\right) \rightarrow 0$. But

$$
\begin{aligned}
S^{-1} N^{\prime} & =S^{-1} R \otimes_{R} \sum_{i=1}^{n} R y_{i} \\
& \cong \sum_{i=1}^{n} S^{-1} R y_{i} \\
& \cong S^{-1} N
\end{aligned}
$$

and so $S^{-1}\left(N / N^{\prime}\right)=0$.
$\Longleftarrow: ~ S u p p o s e ~ t h a t ~ w e ~ h a v e ~ N^{\prime} \leq N$ such that $N^{\prime} \cong M$ and $S^{-1}\left(N / N^{\prime}\right)=0$. Consider the exact sequence

$$
0 \longrightarrow N^{\prime} \longrightarrow N \longrightarrow N / N^{\prime} \longrightarrow 0
$$

$$
\downarrow S^{-1} R \otimes_{R}-
$$

and so $S^{-1} N \cong S^{-1} N^{\prime} \cong S^{-1} M$.

We are interested in these properties of $S^{-1} R \otimes_{R}$ - as they allow us to prove
2.3.14 Theorem (Localization). Let R be a commutative ring, $S \subset R$ be a subset that does not contains 0 nor zero divisors. Let $\mathscr{T}_{R, S}^{2}$ be the full subcategory of $\mathscr{M}(R)$ with objects

$$
\operatorname{Obj} \mathscr{T}_{R, S}^{2}=\left\{M \in \mathscr{M}(R) \mid S^{-1} M=0 \text { and } \operatorname{pd} M \leq 2\right\} .
$$

Then ther exists an exact sequence in $\mathbf{A b}$:

$$
K_{0} \mathscr{T}_{R, S}^{2} \xrightarrow{\widehat{\chi}} K_{0} R \xrightarrow{K_{0} \iota_{S}} K_{0} S^{-1} R
$$

Proof. Define

$$
\begin{aligned}
\chi: \text { Iso } \mathscr{T}_{R, S}^{2} & \longrightarrow K_{0} R \\
{[M] } & \longmapsto\left[P_{0}\right]-\left[P_{1}\right],
\end{aligned}
$$

where $0 \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$ is a projective resolution of M. It is well defined and a generalized rank by Schanuel's lemma. We therefore have an induced homomorphism :

$$
\begin{aligned}
\widehat{\chi}: K_{0} \mathscr{T}_{R, S}^{2} & \longrightarrow K_{0} R \\
{[M] } & \longmapsto\left[P_{0}\right]-\left[P_{1}\right],
\end{aligned}
$$

$\operatorname{im} \widehat{\chi} \subseteq \operatorname{ker} K_{0} \iota_{S}: \quad$ Let $0 \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$ be a projective resolution of M. We apply the exact functor $S^{-1} R \otimes_{R}$ - to get another exact sequence

$$
0 \longrightarrow S^{-1} P_{1} \longrightarrow S^{-1} R_{0} \longrightarrow \underbrace{S^{-1} M}_{=0} \longrightarrow 0
$$

So $K_{0} \iota_{S} \circ \widehat{\chi}([M])=0$.
ker $K_{0} \iota_{S} \subseteq \operatorname{im} \widehat{\chi}: \quad$ If $K_{0} \iota_{S}([P]-[Q])=0$ for $[P],[Q] \in K_{0} R$, then $\left[S^{-1} P\right]-\left[S^{-1} Q\right]=0$, i.e. $\left[S^{-1} P\right]=\left[S^{-1} Q\right]$ in $K_{0} S^{-1} R$, i.e. $S^{-1} P \cong{ }_{S} S^{-1} Q$, i.e. $\exists n \in \mathbb{N}$ such that $S^{-1}\left(P \oplus R^{\oplus n}\right) \cong S^{-1} P \oplus\left(S^{-1} R\right)^{\oplus n} \cong$ $S^{-1} Q \oplus\left(S^{-1} R\right)^{\oplus n} \cong S^{-1}\left(Q \oplus R^{\oplus n}\right)$. Observe that since S contains neither 0 nor zero divisors, it act injectively on any free module $R^{\oplus n}$, since $s r \neq 0, \forall s \in S, \forall r \in R$. Consequently, since any projective R-module is a summand of a free module, S also acts injectively on any projective R-module. So S acts injectively on $P \oplus R^{\oplus n}$ and $Q \oplus R^{\oplus n}$. Since both modules are finitely generated, we can apply a previous proposition. We get that there exists $N \leq Q \oplus R^{\oplus n}$ such that
$-N \cong P \oplus R^{\oplus n}$,
$-\left(Q \oplus R^{\oplus n}\right) / N$ is a S-torsion module.
Consider the following exact sequence :

We have that $\left(Q \oplus R^{\oplus n}\right) / N \in \operatorname{Obj} \mathscr{T}_{R, S}^{2}$. Moreover :

$$
\begin{aligned}
\widehat{\chi}\left(\left[\left(Q \oplus R^{\oplus n}\right) / N\right]\right) & =\left[Q \oplus R^{\oplus n}\right]-[N] \\
& =\left[Q \oplus R^{\oplus n}\right]-\left[P \oplus R^{\oplus n}\right] \\
& =[Q]-[P] .
\end{aligned}
$$

Chapter 3

K_{1} and classification of invertible matrices

The idea is to study an abstract version of the notion of determinant

$$
\operatorname{det}: \mathrm{GL}_{n}(R) \longrightarrow R^{*}
$$

Our plan is:

1. see a matrix-theoretic definition of K_{1}, good for establishing properties, but bad for calculations,
2. determine the universal property of matrix-theoretic K_{1}, and get some computational tools,
3. see a Grothendieck-type description, clarify the relationship with K_{0}, and start to see how K-theory is a sort of homology theory for rings.

3.1 Matrix-theoretical approach to K_{1}

3.1.1 Notations. - Let $\operatorname{Mat}_{n}(R)$ be the ring of n by n matrices with coefficients in R.

- Let $\mathrm{GL}_{n}(R)=\operatorname{Mat}_{n}(R)^{*}$ be the group of invertible matrices.
- $\forall 1 \leq k, l \leq n, k \neq l$, define $E_{k, l} \in \operatorname{Mat}_{n}(R)$ to be the matrix specified by

$$
\left(E_{k, l}\right)_{i, j}= \begin{cases}1 & \text { if } i=k, j=l \\ 0 & \text { otherwise }\end{cases}
$$

- $\forall 1 \leq k, l \leq n, k \neq l, \forall r \in R$, define $\tau_{k, l}(r)=I_{n}+r E_{k, l}$.
- Let $E_{n}(R)=\left\langle\tau_{k, l}(r) \mid 1 \leq k, l \leq n, k \neq l, r \in R\right\rangle$.
3.1.2 Lemma. If $n \geq 3$, then $\left[E_{n}(R), E_{n}(R)\right]=E_{n}(R)$. Consequently, $E_{n}(R) \leq\left[\operatorname{GL}_{n}(R), \operatorname{GL}_{n}(R)\right]$.

Proof. Exercise set 12, exercise 1.
3.1.3 Remark. For all $n \geq 1$, we have an injective homomorphism :

$$
\begin{aligned}
\mathrm{GL}_{n}(R) & \hookrightarrow \mathrm{GL}_{n+1}(R) \\
A & \longmapsto\left(\begin{array}{cc}
A & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

We then have a sequence of injective homomorphisms :

$$
R^{*}=\mathrm{GL}_{1}(R) \longleftrightarrow \mathrm{GL}_{2}(R) \longleftrightarrow \mathrm{GL}_{3}(R) \longleftrightarrow \cdots
$$

Define GL (R) to be the colimit of this diagram :

$$
\mathrm{GL}(R)=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & I_{\infty}
\end{array}\right) \right\rvert\, \exists n \in \mathbb{N} \text { such that } A \in \mathrm{GL}_{n}(R)\right\}
$$

the ∞-dimentional general linear group. Note that the inclusion $\mathrm{GL}_{n}(R) \hookrightarrow \mathrm{GL}_{n+1}(R)$ restricts and corestricts to an inclusion $E_{n}(R) \hookrightarrow E_{n+1}(R)$. We define $E(R) \leq \mathrm{GL}(R)$ in the same way.
3.1.4 Lemma (Whitehead). We have $\left[\operatorname{GL}_{n}(R), \mathrm{GL}_{n}(R)\right] \leq E_{2 n}(R)$, both seen as subgroups of GL (R).

Proof. Exercise set 12.
3.1.5 Corollary. $[\mathrm{GL}(R), \mathrm{GL}(R)]=E(R)$.

Proof. - We show that $E(R) \leq[\mathrm{GL}(R), \mathrm{GL}(R)]$. Let $A \in E_{n}(R)$, seen as a $\mathrm{GL}(R)$ matrix $\left(\begin{array}{cc}A & 0 \\ 0 & I_{\infty}\end{array}\right)$. Since $A \in\left[\operatorname{GL}_{n}(R), \mathrm{GL}_{n}(R)\right]$ by earlyer lemma, and, seen as a subgroup of $\mathrm{GL}(R)$, we conclude that

$$
\left(\begin{array}{cc}
A & 0 \\
0 & I_{\infty}
\end{array}\right) \in[\operatorname{GL}(R), \operatorname{GL}(R)]
$$

- We show that $[\mathrm{GL}(R), \mathrm{GL}(R)] \leq E(R)$. Let $A \in\left[\mathrm{GL}_{n}(R), \mathrm{GL}_{n}(R)\right]$, seen as a $\mathrm{GL}(R)$ matrix $:\left(\begin{array}{cc}A & 0 \\ 0 & I_{\infty}\end{array}\right)$. By the Whitehead lemma, $\left(\begin{array}{cc}A & 0 \\ 0 & I_{n}\end{array}\right) \in E_{2 n}(R)$, whence

$$
\left(\begin{array}{cc}
A & 0 \\
0 & I_{\infty}
\end{array}\right) \in E(R)
$$

3.1.6 Definition (Bass-Whitehead group). Let R be a ring. The Baas-Whitehead group of R is defined by

$$
K_{1} R=\mathrm{GL}(R) / E(R)
$$

It is the abelianization of $\operatorname{GL}(R)$.
3.1.7 Proposition. K_{1} extends to a functor $K_{1}: \mathbf{R i n g} \longrightarrow \mathbf{A b}$.

Proof. Let $\phi: R \longrightarrow S$ be a ring homomorphism. Consider the following diagram of groups :

3.1.8 Properties. 1. $K_{1} R \cong K_{1}\left(R^{\mathrm{op}}\right)$.

2. $K_{1} \operatorname{Mat}_{n}(R) \cong K_{1} R$.
3. $K_{1}\left(R \times R^{\prime}\right) \cong K_{1} R \cong K_{1} R^{\prime}$.

Proof. Exercise set 12.
First hint of the relation between K_{0} and K_{1} :

- In K_{0}, we know that $[P]=[Q]$ iff $\exists n \in \mathbb{N}$ such that $P \oplus R^{\oplus n} \cong Q \oplus R^{\oplus n}$ (existanceof basis and dimension of modules).
- In $K_{1} R$, recall that $A \in G L_{n}(R)$ implies that the rows of A are a basis of a free module. Moreover, $[A]=[B]$ in $K_{1} R$ iff $\exists E \in E(R)$ such thah $A=E B$. The bases determined by A and B are related by row operations. So $K_{1} R$ tells us about uniqueness of bases up to row operations.

We'll make all this more precise...

3.2 The universal property of $K_{1} R$

3.2.1 Definition (Generalized determinant). Let R be a ring. A generalized determinant on R is a sequence of maps $\left\{\delta_{n}: \mathrm{GL}_{n}(R) \longrightarrow G\right\}_{n \in \mathbb{N}}$, where G is an abelian group, and such that

1. $\delta_{n}(A B)=\delta_{n}(A) \delta_{n}(B), \forall A, B \in \mathrm{GL}_{n}(R), \forall n \in \mathbb{N}$,
2. $\delta_{n}\left(\tau_{k, l}(r)\right)=1, \forall 1 \leq k, l \leq n, k \neq l, \forall r \in R, \forall n \in \mathbb{N}$,
3. the following diagram commutes :

3.2.2 Examples. 1. Let R be a commutative ring. Define $\operatorname{det}_{n}: \mathrm{GL}_{n}(R) \longrightarrow R^{*}$ to be the usual determinant. Then det $=\left\{\operatorname{det}_{n}\right\}_{n \in \mathbb{N}}$ is a generalized determinant.
4. (Stabilization) Let $s_{n}: \mathrm{GL}_{n}(R) \longrightarrow K_{1} R$ denote the composite

$$
\mathrm{GL}_{n}(R) \longleftrightarrow \mathrm{GL}(R) \longrightarrow K_{1} R
$$

3.2.3 Theorem. Stabilization is a universal generaized determinant, i.e. every other generalized determinant factors uniquely through s :

Proof. The family of homomorphisms $\delta_{n}: \mathrm{GL}_{n}(R) \longrightarrow G$ induces a homomorphism

$$
\begin{aligned}
& \widetilde{\delta}: \mathrm{GL}(R) \longrightarrow G \\
& \left(\begin{array}{cc}
A & 0 \\
0 & I_{\infty}
\end{array}\right) \longmapsto \delta_{k}(A),
\end{aligned}
$$

where $A \in \operatorname{GL}_{k}(R)$. It is well defined by a property of a generalized determinant. Note that $\widetilde{\delta}$ is defined precisely so that

On the other hand, $\left\{\delta_{n}\right\}_{n \in \mathbb{N}^{*}}$ is a generalized determinant, so $\delta_{n}\left(\tau_{i, j}(r)\right)=1, \forall 1 \leq i, j \leq n$, $\forall r \in R$. Consequently, $E_{n}(R) \subseteq \operatorname{ker} \delta_{n}$ and so $E(R) \subseteq \operatorname{ker} \delta$. Thus there exists a induces homomorphism

Observe that

3.3 A Grothendieck type approach to K_{1}

Observe that invertible matricies correspond to automorphisms of free R-modules. So do a Grothendieck type construction, taking automorphisms of modules into account.
3.3.1 Definition (Bass K_{1} group). Let R be a ring. Let \mathscr{C} be a subcategory of ${ }_{R} \operatorname{Mod}$ with a set of isomorphism classes of objects. The Bass K_{1} group of \mathscr{C} is

$$
K_{1} \mathscr{C}=\left(F_{\mathbf{A b}} \operatorname{Iso}\{(P, \alpha) \mid P \in \operatorname{Obj} \mathscr{C}, \alpha \in \operatorname{Aut}(P)\}\right) / G,
$$

where Q is the subgroup generated by

- $(P, \alpha \circ \beta)-(P, \alpha)-(P, \beta), \forall P \in \operatorname{Obj} \mathscr{C}, \forall \alpha, \beta \in \operatorname{Aut}(P)$,
- $(M, \beta)-(L, \alpha)-(N, \gamma)$, where the following diagram commutes with exact lines :

3.3.2 Remark. The relations in $K_{1} \mathscr{C}$ imply that
- $\left[\left(P, \operatorname{id}_{P}\right)\right]=\left[\left(P, \operatorname{id}_{P} \circ \operatorname{id}_{P}\right)\right]=2\left[\left(P, \operatorname{id}_{P}\right)\right]$, and so $\left[\left(P, \operatorname{id}_{P}\right)\right]=0$,
- $[(P, \alpha)]=-\left[\left(P, \alpha^{-1}\right)\right]$.
3.3.3 Proposition. $K_{1} R \cong K_{1} \mathscr{F}(R)$.

Proof. - We construct a homomorphism $K_{1} R \longrightarrow K_{1} \mathscr{F}(R)$. We use the universal property of $K_{1} R$ and the generalized determinant $\left\{s_{n}: \operatorname{GL}_{n}(R) \longrightarrow K_{1} R\right\}_{n \in \mathbb{N}^{*}}$. We need to find a generalized determinant $\left\{\delta_{n}: \mathrm{GL}_{n}(R) \longrightarrow K_{1} \mathscr{F}(R)\right\}_{n \in \mathbb{N}^{*}}$. For al $A \in \mathrm{GL}_{n}(R)$ there is an associated homomorphism :

$$
\begin{aligned}
\lambda_{A}: R^{\oplus n} & \longrightarrow R^{\oplus n} \\
\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right) & \longmapsto A\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right) .
\end{aligned}
$$

So it makes sense to define

$$
\begin{aligned}
\delta_{n}: \mathrm{GL}_{n}(R) & \longrightarrow K_{1} \mathscr{F}(R) \\
A & \longmapsto\left[\left(R^{\oplus n}, \lambda_{A}\right)\right] .
\end{aligned}
$$

This is at least a well defined function. We now check the axioms :

1. $\delta_{n}(A B)=\delta_{n}(A) \delta_{n}(B)$, easily.
2. $\delta_{n}\left(\tau_{i, j}(r)\right)=0$. Consider

$$
\begin{aligned}
\partial_{j}: R^{\oplus(n-1)} & \longrightarrow R^{\oplus n} \\
\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n-1}
\end{array}\right) & \longmapsto\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{i-1} \\
0 \\
v_{i} \\
\vdots \\
v_{n-1} .
\end{array}\right)
\end{aligned}
$$

Remark that the following diagram commutes with exact lines :

Thus

$$
\begin{aligned}
{\left[\left(R^{\oplus n}, \lambda_{\tau_{i, j}(r)}\right)\right] } & =\left[\left(R^{\oplus(n-1)}, \operatorname{id}_{R^{\oplus(n-1)}}\right)\right]+\left[\left(R, \operatorname{id}_{R}\right)\right] \\
& =0
\end{aligned}
$$

3. $\delta_{n+1}\left(\left(\begin{array}{cc}A & 0 \\ 0 & 1\end{array}\right)\right)=\delta_{n}(A)$. Note $B=\left(\begin{array}{cc}A & 0 \\ 0 & 1\end{array}\right)$. Consider

Thus

$$
\begin{aligned}
{\left[\left(R^{\oplus(n+1)}, \lambda_{B}\right)\right] } & =\left[\left(R^{\oplus n}, \lambda_{A}\right)\right]+\left[\left(R, \operatorname{id}_{R}\right)\right] \\
& =\left[\left(R^{\oplus n}, \lambda_{A}\right)\right]
\end{aligned}
$$

So by the niversal property of $K_{1} R$, there exists a unique homomorphism $\widehat{\delta}: K_{1} R \longrightarrow$ $K_{1} \mathscr{F}(R)$ such that $\delta \circ s_{n}=\delta_{n}$, i.e.

$$
\widehat{\delta}\left(\left(\begin{array}{cc}
A & 0 \\
0 & I_{\infty}
\end{array}\right)\right)=\delta_{n}(A)
$$

- We now define the homomorphism $K_{1} \mathscr{F}(R) \longrightarrow K_{1} R$. Define a function

$$
\operatorname{Iso}\{(P, \alpha) \mid P \in \operatorname{Obj} \mathscr{F}(R), \alpha \in \operatorname{Aut}(P)\} \longrightarrow K_{1} R
$$

as follows : choose a basis for P, i.e. choose an isomorphism of R-modules $\varepsilon_{P}: P \xrightarrow{\cong} R^{\oplus n}$. Define

$$
\varepsilon((P, \alpha))=s_{n}\left(\varepsilon_{P} \circ \alpha \circ \varepsilon_{P}^{-1}\right)
$$

seen as a n by n matrix. Let $\widetilde{\varepsilon}: F_{\mathbf{A b}}$ Iso $\{\cdots\} \longrightarrow K_{1} R$ be the unique homomorphism defined by ε. We need to show that $Q \subseteq \operatorname{ker} \widetilde{\varepsilon}$.

- Consider $P \in \operatorname{Obj} \mathscr{F}(R)$ and automorphisms $\alpha, \beta \in \operatorname{Aut}(P)$. Observe that

$$
\begin{aligned}
\widetilde{\varepsilon}((P, \alpha \circ \beta)) & =s_{n}\left(\varepsilon_{P} \circ \alpha \circ \beta \circ \varepsilon_{P}^{-1}\right) \\
& =s_{n}\left(\varepsilon_{P} \circ \alpha \circ \varepsilon_{P}^{-1} \circ \varepsilon_{P} \beta \circ \varepsilon_{P}^{-1}\right) \\
& =s_{n}\left(\varepsilon_{P} \circ \alpha \circ \varepsilon_{P}^{-1}\right) s_{n}\left(\varepsilon_{P} \beta \circ \varepsilon_{P}^{-1}\right) \\
& =\widetilde{\varepsilon}((P, \alpha)) \widetilde{\varepsilon}((P, \beta))
\end{aligned}
$$

Therefore $[(P, \alpha \circ \beta)]-[(P, \alpha)]-[(P, \beta)] \in \operatorname{ker} \varepsilon$.

- If the following diagram commutes with exact lines

then there is a choice of isomorphisms (or equivalently a choice of bases) such that

Then

$$
\begin{aligned}
& \widetilde{\varepsilon}((M, \beta)-(L, \alpha)-(N, \gamma)) \\
& =\widetilde{\varepsilon}((M, \beta)) \widetilde{\varepsilon}((L, \alpha))^{-1} \widetilde{\varepsilon}((N, \gamma))^{-1} \\
& =s_{l+n}\left(\varepsilon_{M} \circ \beta \circ \varepsilon_{M}^{-1}\right) s_{l}\left(\varepsilon_{L} \circ \alpha^{-1} \circ \varepsilon_{L}^{-1}\right) s_{n}\left(\varepsilon_{N} \circ \gamma^{-1} \circ \varepsilon_{N}^{-1}\right) \\
& =s_{l+n}\left(\left(\begin{array}{cc}
\varepsilon_{L} \circ \alpha \circ \varepsilon_{L}^{-1} & 0 \\
0 & \varepsilon_{N} \circ \gamma \circ \varepsilon_{N}^{-1}
\end{array}\right)\left(\begin{array}{cc}
\varepsilon_{L} \circ \alpha^{-1} \circ \varepsilon_{L}^{-1} & 0 \\
0 & I_{n}
\end{array}\right)\left(\begin{array}{cc}
I_{l} & 0 \\
0 & \varepsilon_{N} \circ \gamma^{-1} \circ \varepsilon_{N}^{-1}
\end{array}\right)\right) \\
& =s_{l+n}\left(I_{l+n}\right) \\
& =I_{\infty} .
\end{aligned}
$$

Finally, $Q \subseteq \operatorname{ker} \widetilde{\varepsilon}$. Therefore, there exists a unique homomorphism

$$
\begin{aligned}
\widehat{\varepsilon}: K_{1} \mathscr{F}(R) & \longrightarrow K_{1} R \\
\quad[(P, \alpha)] & \longmapsto s_{n}\left(\varepsilon_{P} \circ \alpha \circ \varepsilon_{P}^{-1}\right.
\end{aligned}
$$

- It is not hard to show that $\widehat{\delta}$ and $\widehat{\varepsilon}$ are mutually inverse. So $K_{1} \mathscr{F}(R) \cong K_{1} R$.
3.3.4 Proposition. $K_{1} \mathscr{F}(R)=K_{1} \mathscr{P}(R)$.

Proof. Exercise set 13.

3.4 K-Theory as a homology theory of rings

The idea here is to explore the analogies with homology theories of topological spaces.
3.4.1 Definition (Excision). Let R and R^{\prime} be two rings, and $J \subseteq R$ and $J^{\prime} \subseteq R^{\prime}$ be two sided ideals. An excision with respect to J and J^{\prime} is a homomorphism $\phi: R \longrightarrow R^{\prime}$ that restricts and corestricts to an isomorphism $\left.\phi\right|_{J} ^{J^{\prime}}: J \xrightarrow{\cong} J^{\prime}$.
3.4.2 Definition (Relative K-Theory groups). Consider the following pullback

where $D(R, J)=\left\{\left(r_{1}, r_{2}\right) \in R^{2} \mid q\left(r_{1}\right)=q\left(r_{2}\right)\right\}$ is the double of R with respect to J. Then we define the relative \mathbf{K}-Theory groups :

$$
\begin{aligned}
& K_{0}(R, J)=K_{0} D(R, J) \\
& K_{1}(R, J)=K_{1} D(R, J) .
\end{aligned}
$$

3.4.3 Theorem (Excision). An excision $\phi: R \longrightarrow R^{\prime}$ with respact to J and J^{\prime} induces a isomorphisms

$$
\begin{aligned}
K_{0}(R, J) & \cong K_{0}\left(R^{\prime}, J^{\prime}\right) \\
K_{1}(R, J) & \cong K_{1}\left(R^{\prime}, J^{\prime}\right)
\end{aligned}
$$

"Away from J and J^{\prime}, the rings look the same".
3.4.4 Theorem (Mayer-Vietoris). For every pair of ring homomorphisms $R \xrightarrow{\phi} T \stackrel{\pi}{\longleftarrow} S$, where π is surjective, there is an exact sequence

$$
\begin{aligned}
& K_{1}\left(R \times_{T} S\right) \xrightarrow{K_{1} \operatorname{proj}_{R} \oplus K_{1} \operatorname{proj}_{S}} K_{1} R \oplus K_{1} S \xrightarrow{K_{1} \phi-K_{1} \pi} K_{1} T- \\
& \longleftrightarrow K_{0}\left(R \times_{T} S\right) \xrightarrow{K_{0} \operatorname{proj}_{R} \oplus K_{0} \operatorname{proj}_{S}} K_{0} R \oplus K_{0} S \xrightarrow{K_{0} \phi-K_{0} \pi} K_{0} T
\end{aligned}
$$

where $R \otimes_{T} S=\{(r, s) \in R \times S \mid \phi(r)=\pi(s)\}$.
3.4.5 Remark. The localization sequence extends to K_{1} : for all commutative ring $R, \forall S \subseteq R$ that does not contains 0 nor zero-divisors, there exists an exact sequence :

$$
K_{1} R \longrightarrow K_{1} S^{-1} R
$$

$$
\leftrightarrow K_{0} \mathscr{T}_{R, S}^{2} \longrightarrow K_{0} R \longrightarrow K_{0} S^{-1} R
$$

Index

- Symbols -

ι_{S}.. 38

- B -

Baas-Whitehead group 48
Bilinear map
48
29

- D

D -
$d_{\mathscr{C}}$
Dévissage 16
Double .. 54

$$
-\mathrm{E}-
$$

Eilenberg swindle 15
E_{n}... 47
Euler characteristic 22
Exact functor 32
Excision
.54
\qquad
$F_{\text {Ab }}$
. 10
Flat module .. 42

Free abelian group functor 10
$\mathscr{F}^{\text {st }}(R) \ldots . . .$.
$-\mathrm{G}-$
Generalized
determinant7,49
dimension
rank 6
. 6

GL ... 48
gldim 21
GL_{n}... . . 47
Global dimension 21
G_{0}
15
Grothendieck group 13

Group completion 9

Invariant basis number
14

- K -
${\underset{\sim}{K}}_{0}$ 13

$\widetilde{K}_{0} R$

26
K_{1} 51
Localization 37

- M
Mat 47
$\mathscr{M}(R)$ 15
$\mathscr{P}_{<\infty}(R)$ 21
pd 21
$\mathscr{P}(R)$ 15
Projective
class group 26
dimension 21
resolution 21
Relative K-Theory groups 54
- S S -
Semi simple 26
Semigroup 9
Semiring 31
SGrp 9Stably
equivalent 26
free 26
isomorphic 26
- T
Tensor product 29
$-\mathrm{V}$$\mathscr{V}_{\mathbb{F}}^{<\infty}$5

