
Gödel and recursivity

Prof. J. Duparc
TEXed by Cédric Ho Thanh

Spring 2013

Prof. J. Duparc 2

Contents

1 Introduction 5

2 Towards Turing machines 7
2.1 Finite automatons . 7
2.2 Counter automatons and pushdown automatons . 11
2.3 Turing machines . 13

3 From Turing machines to recursive functions 17
3.1 Primitive recursive functions . 17
3.2 Coding sequences of integers . 22
3.3 Recursive functions . 22

4 Arithmatical hierarchy 25
4.1 Σ0

n,Π
0
n and ∆0

n . 25
4.2 Turing machine with oracle . 27

5 Arithmetisation of the first order logic and Gödels first incompleteness theorem 29
5.1 Representable functions . 31
5.2 Arithmetization of syntax . 33
5.3 Coding proofs . 37

3

CONTENTS

Prof. J. Duparc 4

Chapter 1

Introduction

1.0.1 Definition (Goodstein sequence). Let m ∈ N be an integer from which we define the
Goodstein sequence (Gm(i))i∈N. For instance, if m = 4 :

• G4
(0) : write 4 in hereditary base 2 : G4

(0) = 22 = 4,

• G4
(1) : replace base 2 by base 3 and substract 1 : G4

(1) = 33−1 = 2×32 + 2×31 + 2×30 = 26,

• G4
(2) : increase the base and substract 1 : G4

(2) = 2× 42 + 2× 41 + 2× 40 − 1 = 41,

• and so on...

Elements of G4 continue to increase until G4
(3×2402653209) where it reaches 3× 2402653210− 1, it stays

there for the next 3× 2402653209 steps and then starts to decrease.

1.0.2 Theorem (Goodstein, 1944). For any m ∈ N

lim
i→∞

Gm(i) = 0.

1.0.3 Theorem (Kiny, Paris, 19820). The Goodstein theorem cannot be proved in Peano aritmetic.

5

Prof. J. Duparc 6

Chapter 2

Towards Turing machines

2.1 Finite automatons

2.1.1 Definition (Deterministic finite automaton, DFA). • A deterministic finite automa-
ton (DFA) A is defined by :

A = 〈Q,Σ, δ, q0, F 〉

where

1. Q is a finite set of states ,

2. Σ is a nonempty set called the alphabet,

3. δ : Q× Σ −→ Q is a function,

4. q0 ∈ Q is the initial state

5. F ⊆ Q is the set of accepting states .

• The automaton A accepts a word w ∈ Σ<ω iff :

– ∃a0, . . . , an ∈ Σ such that w = a0 · · · an,

– ∃r0, . . . , rn+1 ∈ Q such that r0 = q0, δ(ri, ai) = ri+1, ∀i ≤ n,

– rn+1 ∈ F .

• The langage accepted by A is defined by

L(A) =
{
w ∈ Σ<ω | A accepts w

}
.

2.1.2 Examples. • Let Q = {q0, q1, q2}, Σ = {0, 1}, F = {q1} and A be defined by :

q0 q1 q2

0

1
0

0, 1

1

.

Then, A accepts 0101 but rejects 010.

7

2.1. FINITE AUTOMATONS

• Let Q = {q0, q1}, Σ = {0, 1}, F = {q1} and B be defined by :

q0 q1

1

0

10

.

Then, L(B) = {w ∈ Σ<ω | w ends with a 1}.

• Let L = {w ∈ {0, 1}<ω | w contains as many 0’s as 1’s}. There is no DFA C such that L(C) =
L.

2.1.3 Definition (Regular langage). A langage is regular if it is recognized by a DFA (i.e. all of
its words are accepted by this DFA). The class of all regural langages is called Reg .

2.1.4 Notation. Let Σ be an alphabet, let ε stands for the empty word and Σε = Σ ∪ {ε} .

2.1.5 Definition (Nondeterministic finite automaton, NFA). • A non deterministic finite
automaton (NFA) A is defined by :

A = 〈Q,Σ, δ, q0, F 〉

where

1. Q is a finite set of states ,

2. Σ is a nonempty set called the alphabet,

3. δ : Q× Σ −→ P(Q) is a function,

4. q0 ∈ Q is the initial state

5. F ⊆ Q is the set of accepting states .

• The automaton A accepts a word w ∈ Σ<ω iff

– ∃a0, . . . , an ∈ Σ such that w = a0 · · · an,

– ∃r0, . . . , rn+1 ∈ Q such that r0 = q0, ri+1 ∈ δ(ri, ai), ∀i ≤ n,

– rn+1 ∈ F .

• The langage accepted by A is defined by

L(A) =
{
w ∈ Σ<ω | A accepts w

}
.

2.1.6 Theorem. For every NFA, there exists an equivalent DFA, i.e. the two automata recognize
the same langage.

Proof. Let N = 〈Q,Σ, δ, q0, F 〉 be a NFA. Suppose that N has no ε-transition. Then define the
DFA

D = 〈P(Q),Σ, δ′, {q0}, F ′〉

where

• δ′(R, a) =
⋃
r∈R δ(r, a) = {q ∈ Q | ∃r ∈ R such that q ∈ δ(r, a)},

• F ′ = {R ∈ P(Q) | R ∩ F 6= ∅}.

Prof. J. Duparc 8

CHAPTER 2. TOWARDS TURING MACHINES

If N has ε-transitions, then define

Eps(R) = {q ∈ Q | q can be reached from R by traveling along ε-transition(s)} .

Then define D as above with the following changes :

• the initial state is Eps({q0}),

• δ′(R, a) = Eps
(⋃

r∈R δ(r, a)
)
.

2.1.7 Theorem. The class Reg is closed under the following operations :

1. Union : LA ∪ LB = {w ∈ Σ<ω | w ∈ LA or w ∈ LB},

2. Concatenation : LA · LB = {w ∈ Σ<ω | ∃u ∈ LA,∃v ∈ LB such that w = uv},

3. Star operation : L∗A = {w ∈ Σ<ω | ∃k ∈ N,∃u1, . . . , uk ∈ LA such that w = u1 · · ·uk} ∪ {ε}.

Proof. Let A and B be two DFAs such that L(A) = LA and L(B) = LB .

1. Define C by

q0

A

qA,0 · · · ...

B

qB,0 · · · ...

0, 1

0, 1

.

2. Define D by :

A

qA,0 · · · ...

B

qB,0 · · · ...

ε

ε

.

Prof. J. Duparc 9

2.1. FINITE AUTOMATONS

3. Define E by

qE,0

A

qA,0 · · · ...

ε

ε .

2.1.8 Definition (Regular expression). R is a regular expression if either

• ∅,

• a letter a ∈ Σ,

• ε,

• R1 ∪R2, where R1 and R2 are regular expressions,

• R1 ·R2, where R1 and R2 are regular expressions,

• R∗1 where R1 is a regular expression.

We define L(R) as follow :

• L(∅) = ∅,

• L(a) = a for all a ∈ Σ,

• L(ε) = {ε},

• L(R1 ∪R2) = L(R1) ∪ L(R2),

• L(R1 ·R2) = L(R1) · L(R2),

• L(R∗1) = L(R1)∗.

2.1.9 Theorem. A langage L is regular iff there exists some regular expression R such that
L(R) = L.

Proof. Exercise.

Fix Σ a finite alphabet. Hom many regular langages does it admit ? Let D = 〈Q,Σ, δ, q0, F 〉 be
a DFA with Q = {q0, . . . , qn}, Σ = {a1, . . . , ak}, F = {qi1 , . . . , qim}. We code Q by nQ = n+ 1, Σ
by nΣ = k, q0 by nq0 = 0, F by

nF =

m∏
j=1

p
ij
j , where {p1, . . .} = P.

Prof. J. Duparc 10

CHAPTER 2. TOWARDS TURING MACHINES

To code δ, remind that δ : Q×Σ −→ Q can be viewed as a subset δ ⊂ Q×Σ×Q. A triple (qi, aj , ql)
can be coded by n(qi,aj ,ql) = 2i3j5l. So δ can be coded by

nδ =
∏

(qi,aj ,ql)∈δ

pn(qi,aj,ql)
.

A DFA is then coded by a sequence of 5 integers, which can itself be coded as an integer. We have
an injection from the set of all the DFAs built on Σ to N.

2.1.10 Corollary. There are countably many regular langages.

Hom many langages does Σ admit ? If Σ is finite, then Card Σ<ω = ℵ0 and CardP(Σ<ω) =
CardR. So most of the langages are not regular.

2.2 Counter automatons and pushdown automatons

2.2.1 Definition (Counter automaton). A counter automaton is the same as a DFA or a NFA
to which we add a counter (or stack) :

C = 〈Q,Σ, δ, q0, F,⊥, 0〉

• ⊥ 6= 0,

• the automaton cas push or pop the letter 0 inside the stack,

• the automaton can read the top of the stack,

• ⊥ at the bottom of the stack and cannot be pushed nor popped,

• δ : Q× Σ× {⊥, 0} −→ Q× {push,pop,−} if the automaton is deterministic,

• δ : Q× Σ× {⊥, 0} −→ P(Q× {push,pop,−}) is the automaton is non deterministic.

2.2.2 Example. Consider

q0 q1

q2 q3

0,⊥ → −

0,⊥ → push

0, 0→ push

1,⊥ → −
1, 0→ pop

1, 0→ pop

1,⊥ → −

in addition that for any missing edge, the machine goes to a “trash” state which is not accepting
and from which it can’t escape. This CDFA recognises L(C) = {0n1n | n ∈ N}, which is not regular.

Prof. J. Duparc 11

2.2. COUNTER AUTOMATONS AND PUSHDOWN AUTOMATONS

2.2.3 Definition (Pushdown automaton). A pushdown automaton is given by

P = 〈Q,Σ,Γ, δ, q0, F 〉

where

• Γ is a finite alphabet called the stack alphabet ,

• δ : Q× Σε × Γε −→ Q× Γε for a deterministic automaton,

• δ : Q× Σε × Γε −→ P(Q× Γε) for a non deterministic automaton.

The automaton P computes as follow : a word w = w1 · · ·wn is accepted iff ∃r0, . . . , rn ∈ Q,
∃s0, . . . , sn ∈ Γ<ω such that

1. r0 = q0,

2. s0 = ε,

3. (ri+1, b) ∈ δ(ri, wi+1, a), ∀i ≤ n − 1, where si = at, si+1 = bt, for some a, b ∈ Γε (t is the
begining of the stack and a its last letter which is replaced by b),

4. rn ∈ F .

2.2.4 Definition (Context free grammar). A context free grammar G = 〈V,Σ, R, S〉 is defined
by :

1. V is a finite set of variables ,

2. Σ is a finite set of terminal such that Σ ∩ V = ∅,

3. R is a finite set of rules ,

4. S ∈ V is the start variable.

The langage it generates is the set of all words that can be derived from it.

2.2.5 Example. Consider the following context free grammar : V = {A,B}, Σ = {0, 1,]}, S = A
and the rules are :

A −→ 0A1

A −→ 0B1

B −→].

The generated langage is {0n]1n | n ≥ 1}.

2.2.6 Theorem. A langage is recognized by a NPDA iff it is context free, i.e. generated by a CFG.

Le langage L = {aibjk | i = j or i = k}. is recognized by a NPFA but not by a DPFA.
l′ = {aibici | i ∈ N} is not recognized by a NPFA but easily recognized by a Turing machine.

Prof. J. Duparc 12

CHAPTER 2. TOWARDS TURING MACHINES

2.3 Turing machines

2.3.1 Definition (Deterministic Turing machine). A deterministic Turing machine (TM or
DTM) is a 7-tuple

T = 〈Q,Σ,Γ, δ, q0, qaccept, qreject〉

where

1. Q is a finite set of states , or control state ,

2. Σ is a finite alphabet, not containing the blank symbol t,

3. Γ is the working alphabet , where Σ ⊂ Γ and t ∈ Γ,

4. δ : Q× Γ −→ Q× Γ× {L,R} is the transition function ,

5. q0 ∈ Q is the initial state ,

6. qaccept ∈ Q is the accepting state ,

7. qreject ∈ Q is the rejecting state .

If the head of the machine is at the left-hand end of the tape, it cannot move left. If δ says so, it
stays put. A configuration of a TM is a snapshot :

1011q701111

means that

• the current control state is q7,

• the word written is 101101111,

• the position of the head is
q7

↓
1 0 1 1 0 1 1 1 1

.

The initial configuration on input w ∈ Σ∗ is q0w. A halting configuration is a configuration which
state is either qaccept or qreject. Given a, b, c ∈ Γ, u, v ∈ Γ∗, qi, qj ∈ Q, we say that

• uaqibv yields to uqjacv if δ(qi, b) = (qj , c, L),

• uaqibv yields to uacqjv if δ(qi, b) = (qj , c, R).

The TM accepts the input w if there is a sequence of configurations c1, . . . , ck such that

• c1 = q0w,

• ci yields to ci+1,

• ck is an accepting configuration.

The set of words acepted by a TM T is

L(T) = {w ∈ Σ∗ | T accepts w} .

Prof. J. Duparc 13

2.3. TURING MACHINES

2.3.2 Definition (Turing-recognizable, Turing-decidable). A langage L is :

• Turing-recognizable if there exist a TM T such that L = L(T),

• Turing-decidable if there exists a decider , i.e. a TM that halts on all inputs and that
recognizes L.

Hilbert’s 10th problen (1900, Paris) : “ Given a Diaphantine equation with any number of
unknown quantities and with rational integral numerical coefficients, devise a process according
to which it can be determined in a finie number of operations wether the equation is solvable in
rational integers ”.

Proving that such an algorithm exists requires a formal definition. The Church-Turing thesis
says that the intuitive notion of an algorithm is captured by the notion of a Turing machine.

Yuri Matyasevic (1970) : There is no decider of {P | P is a polynomial with integral root}.
Therefor, Hilbert’s 10th problem is undecidable. It is recognizable though.

2.3.3 Proposition. Given a TM

• there exist an equivalent TM with a bi-infinite tape,

• there exists an equivalent multitape TM,

• there exists an equivalent multitape TM with bi-infinite tapes.

2.3.4 Definition (k-tape Turing machine). A k-tape Turing machine is the same as a TM
exept that it has k tapes, k independent heads and

δ : Q× Γk −→ Q× Γk × {L,R}k.

2.3.5 Theorem. Avery multitape TM has an equivalent 1-tape TM.

2.3.6 Definition (Non deterministic Turing machine). A nondeterministic Turing machine
(NTM) is the same as a deterministic TM exept

δ : Q× Γ −→ P(Q× Γ× {L,R}).

2.3.7 Theorem. Every NTM has an equivalent DTM.

Proof. We build a 3-tapes DTM D that simulates a NTM N. The tapes are :

1. the input tape : contains the input word w,

2. the simulation tape : Empty at the begening,

3. the adress tape : empty at the begining.

First, D copies the input w from tape 1 to tape 2. Then, tape 3 uses tape 2 to simulate N with
input w on one branch of its non deterministic computation. For this, consider

n = max {Card δ(q, γ) | (q, γ) ∈ Q× Γ} .

We consider the infinitary n-ary tree of non deterministic choices. For each (q, γ) ∈ Q × Γ, we
fix a linear ordering of transitions δ(q, γ) (this ordering has length at most n). The idea is to try
all possible branch, not by a depth first search but in a breadth first search. Before each step of
N, D consults the next symbol on tape 3 to determine which choice to make among the allowed
N’s transitions. If the k-th choice is invalid, D aborts this branch and goes to the next one. If an
accepting state is encountered, it accepts.

Prof. J. Duparc 14

CHAPTER 2. TOWARDS TURING MACHINES

2.3.8 Definition (Enumerator). An enumerator of a langage L is a TM E such that the result
of its (possibly infinite) computation is

w0 t w1 t w2 t · · · ,

where L = {wn}n∈N.

2.3.9 Definition (Recursively enumerable langage). A langage is recursively enumerable if
there is an enumerator that enumerates it.

2.3.10 Theorem. A langage is Turing-recognizable if and only if it is recursively enumerable.

Proof. ⇒ : From M a TM that recognizes L = L(M), we build E that enumerates L :

– fix a recursive enumeration of Σ∗ = {si}i∈N,

– for i = 1, 2, . . ., repeat the following : run M for i steps successively on inputs s0, . . . , si.
If any computation accepts, print the corresponding input sk.

⇐ : From E an enumerator, build M as follow : on input w, run E and every time it prints
something, compare it to w.

2.3.11 Exercise. Let Σ be an ordered alphabet and consider the lexicographical ordering of Σ∗.
Prove that a langage is decidable iff there exists an enumerator that prints out L in this ordering.

Consider all DTM with fixed alphabets Σ = {0, 1} and Γ = {0, 1,t}. Any such Turung machine
is of the form

M = 〈{q0, . . . , qk}, {0, 1}, {0, 1,t}, δ, q0, qi = qi, qj〉

where δ is just a set of 5-tuples. The description of M is a finite sequence on a finite alphabet

A =
{
〉, 〈, , 0, . . . , k,t, }, {,), (

}
.

Get a recursive coding of A∗ −→ Σ∗ (i.e. an injective mapping that can be computed by a TM).
For instance, if you have CardA < 2n for a n ∈ N, code any letter of A by a sequence of n many
0’s and 1’s. Let dwe be the code of w. The langage

{dMe |M is a TM with Σ = {0, 1},Γ = {0, 1,t}}

is decidable.

2.3.12 Definition (Universal Turung machine). A universal Turing machine U on alphabets
ΣU = {0, 1}, ΓU = {0, 1,t} is a TM such that on each input of the form 〈dMe, w〉, U works as M
on w.

2.3.13 Theorem. There exists a universal Turing machine.

Proof. Construct the following 4-tapes TM :

1. input w,

2. w copied from tape 1,

3. the transition relation of M,

4. the sequence dq0edqacceptedqrejecte.

Prof. J. Duparc 15

2.3. TURING MACHINES

2.3.14 Theorem. The langage ATM = {〈dMe, w〉 |M accepts w} is recognizable but not decid-
able.

Proof. The fact that ATM is recognizable is obvious. Suppose it is decidable by D. Build a TM H
tht works the following way on input w :

• H never stops on w iff D accepts 〈w,w〉,

• H accepts w iff D rejects 〈w,w〉.

One has that

H accepts dHe ⇐⇒ D rejects 〈dHe, dHe〉
⇐⇒ H does not accept dHe.

The same king of proof shows that

{〈dMe, w〉 |M stops on w}

is not decidable.
We have that

Reg (CFG (Turing-decidable (Turing recognizable.

Prof. J. Duparc 16

Chapter 3

From Turing machines to recursive
functions

3.1 Primitive recursive functions

3.1.1 Definitions. 1. The i-th projection P ip is the function

P ip : Np −→ N
(x1, . . . , xp) 7−→ xi.

2. The successor function is noted s : N −→ N.

3. If f1, . . . , fn : Np −→ N and g : Nn −→ N, then the composition g(f1, . . . , fn) is defined as

g(f1, . . . , fn) : Np −→ N
(x1, . . . , xp) 7−→ g(f1(x1, . . . , xp), . . . , fn(x1, . . . , xp)).

4. Given g : Np −→ N and h : Np+2 −→ N, there exist a unique f : Np+1 −→ N such that
∀~x ∈ Np, ∀y ∈ N we have :

f(~x, 0) = g(~x) Initial condition

f(~x, y + 1) = f(~x, s(y)) = h(~x, y, f(~x, y)) Induction step.

We say that f is inductively defined by g.

3.1.2 Definition (Primitive recursive function). The set of all primitive recursive functions
(PR functions) is the set that contains

1. all constants functions Np −→ N,

2. all projections P ip : Np −→ N,

3. the successor function s : N −→ N,

and that is closed under composition and induction. In other words, let R0 be the set of all constants
functions, projections and the successor function,

Rn+1 = {functions built by composition and induction of functions of Rn},

17

3.1. PRIMITIVE RECURSIVE FUNCTIONS

PR =
⋃
n∈N

Rn.

3.1.3 Example. • The addition a : (x, y) 7−→ x+ y is primitive recursive :

a(x, 0) = P 1
1 (x, 0)

a(x, y + 1) = a(x, s(y)) = s ◦ P 3
3 (x, y, a(x, y)).

• Multiplication is PR :

x · 0 = 0

x · (y + 1) = x · y + x.

• Exponentiation is PR :

x0 = 1

xy+1 = xy · x.

• Define

x−̇y =

{
x− y if x− y ∈ N
0 otherwise.

It is a PR function :

0−̇1 = 0

(x+ 1)−̇1 = x,

x−̇0 = x

x−̇(y + 1) = (x−̇y)−̇1.

3.1.4 Definition (Primitive recursive set). A subset A ⊆ Np is primitive recursive if it’s char-
acteristic function χA is a PR function.

3.1.5 Example. The set <= {(x, y) ∈ N | x < y} is PR. Indeed,

χ<(x, y) = 1−̇(1−̇(y−̇x)).

3.1.6 Definition (Partial function, total function). We say that (Df , f) is a partial function
Np −→ N if f is a mapping Df −→ N, where Df ⊂ N. It is total if Df = N.

3.1.7 Definition (Turing computable function). A partial function f : Df −→ N with Df ⊂ Np
is Turing computable if there exist a TM M such that on the input (x1, . . . , xp),

• if f(~x) is not defined (i.e. ~x 6∈ Df), then M never stops,

• if ~x ∈ Df , then M stops with f(~x) written on the tape.

3.1.8 Proposition. A partial function f is Turing computable iff its graph

Gf = {(~x, f(~x)) | ~x ∈ Df}

is Turing recognizable.

Prof. J. Duparc 18

CHAPTER 3. FROM TURING MACHINES TO RECURSIVE FUNCTIONS

Proof. ⇒ : From a machine that computes f , we build a machine N that recognizes Gf on input
(~x, y). It simulates M on input ~x. If M stops, it compares f(~x) to y and accepts if they are
equal.

⇐ : From N that recognizes the graph of f , we build M such thatit computes f as follow : on
input ~x, repeatidly, for i = 1, 2, . . .n it simulates N for i-many steps on input (~x, 0), . . . , (~x, i).
If it accepts (~x,m), then M outputs m.

3.1.9 Remark. If f is total and Turing computable, then Gf is Turing decidable.

f is a partial TC function Gf is recursively enumerable Gf is Turing recognizable
f is a total TC function Gf is recursive Gf is Turing decidable

3.1.10 Remark. All functions un R0 are total TC. By induction on n, it is easy to see that
PR =

⋃
n∈NRn contains only total TC functions.

PR (Total TC functions (TC functions.

3.1.11 Proposition. The set PR is closed under variable substitution : given f : Np −→ N a
PR function and any σ : {1, . . . , p} −→ {1, . . . , p} (not necessarily injective), we have

g : Np −→ N
(x1, . . . , xp) 7−→ f(xσ(1), . . . , xσ(p))

and g ∈ PR.

Proof. The function g is the following composite :

g(~x) = f(P pσ(1)(~x), . . . , P pσ(p)(~x)).

3.1.12 Proposition. If A ⊂ Nn is a PR set and f1, . . . , fn : Np −→ N are PR functions, then

E = {~x ∈ Np | (f1(~x), . . . , fn(~x)) ∈ A}

is a PR set.

Proof. Consider its characteristic function :

χE(~x) = χA(f1(~x), . . . , fn(~x)).

3.1.13 Corollary. Let f and g be PR functions. Then the following sets are PR :

{~x | f(~x) < g(~x)}
{~x | f(~x) = g(~x)} .

3.1.14 Proposition. If A,B ⊆ Np are PR sets, then

A ∪B, A ∩B, A∆B, Np \A, A \B

are PR sets.

Prof. J. Duparc 19

3.1. PRIMITIVE RECURSIVE FUNCTIONS

3.1.15 Proposition (Case study). If f1, . . . , fn+1 : Np −→ N are PR functions and A1, . . . , An ⊂
Np are all PR sets, then

g : Np −→ N

~x 7−→

f1(~x) if ~x ∈ A1

f2(~x) if ~x ∈ A2 \A1

f3(~x) if ~x ∈ A3 \ (A1 ∪A2)
...
fn+1(~x) if ~x 6∈

⋃n
k=1An

is a PR function.

Proof. Consider the following form for g :

g(~x) = f1(~x)χA1
(~x) + f2(~x)χA2\A1

+ · · · .

3.1.16 Corollary. Functions sup, inf : Np −→ N are PR.

3.1.17 Proposition. If f : Np+1 −→ N is PR, then

g(x1, . . . , xp, y) =

y∑
t=0

f(x1, . . . , xp, t),

h(x1, . . . , xp, y) =

y∏
t=0

f(x1, . . . , xp, t)

are PR functions.

3.1.18 Proposition (Bounded minimisation). Given a PR set A ⊆ Np+1, then

f : Np+1 −→ N

(~x, z) 7−→
{

0 if there exist no integer t ≤ z such that (~x, t) ∈ A
the least t ≤ z such that (~x, t) ∈ A otherwise.

is a PR function.

Proof. The function f is defined by

f(~x, 0) = 0

f(~x, z + 1) =

f(~x, z) if

∑z
y=0 χA(~x, y) ≥ 1

f(~x, z) otherwise an if f(~x, z) ∈ A
0 otherwise.

3.1.19 Notation. We denote f(~x, z) by

f(~x, z) = µt ≤ z, (~x, z) ∈ A.

Prof. J. Duparc 20

CHAPTER 3. FROM TURING MACHINES TO RECURSIVE FUNCTIONS

3.1.20 Proposition. The set of all predicates (i.e. PR sets) is closed under bounded quantifica-
tion : if A ≤ Np+1 is a PR set, then

B = {(~x, z) | ∃t ≤ z such that (~x, t) ∈ A} ,
C = {(~x, z) | ∀t ≤ z such that (~x, t) ∈ A}

are PR sets.

Proof. Define the characteristic functions :

χB(~x, z) = 1−̇

(
1−̇

z∑
t=0

χA(~x, t)

)
,

χC(~x, z) =

z∏
t=0

χA(~x, t).

3.1.21 Examples. 1. N is a PR set.

2. {2n | n ∈ N} is PR :

χ(0) = 1

χ(n+ 1) = 1−̇χ(n).

3. The function

q(x, y) =

{
0 if y = 0
dxy e otherwise

is PR. Indeed :

q(x, y) = µt ≤ x, (t+ 1)y > x.

4. {(x, y) | x is divided by y} is PR. Indeed :

χ(x, y) = 1−̇(x−̇q(x, y) · y).

5. {x | x si prime} is PR.

6. The function

π : N −→ N
n 7−→ the (n+ 1)th prime number

is PR. Indeed :

π(0) = 2

π(n+ 1) = µz ≤ π(n)! + 1, z > π(n) and z prime.

Prof. J. Duparc 21

3.2. CODING SEQUENCES OF INTEGERS

3.2 Coding sequences of integers

3.2.1 Proposition. For every non zero p ∈ N, there exist PR functions αp : Np −→ N, β1
p , . . . , β

p
p :

N −→ N such that

• αp is a bijection,

• α−1
p (x) = (β1

p(x), . . . , βpp(x)).

Proof. We define those functions by induction on p > 0.

• Define α1 = β1
1 = idN,

• Define α2(x, y) = α2(x+ y, 0) + y. It is a PR function. Define

β1
2(n) = µx ≤ n, ∃t ≤ n such that α2(x, t) = n

β2
2(n) = µy ≤ n, ∃t ≤ n such that α2(t, y) = n.

• We define αp+1 by induction :

αp+1(x1, . . . , xp+1) = αp(x1, . . . , xp−1, α2(xp, xp+1)),

β1
p+1 = β1

p ,

...

βp−1
p+1 = βp−1

p ,

βpp+1 = β1
2 ◦ βpp ,

βp+1
p+1 = β2

2 ◦ βpp .

3.3 Recursive functions

3.3.1 Notation. Let Fp be the set of all partial functions Np −→ N.

If (Df , f) is a partial function and if ~x 6∈ Df , we say that f is not defined on ~x, or that f(~x)
is not defined. Two partial functions (Df , f) and (Dg, g) are equal iff Df = Dg and if f(~x) = g(~x)
for all ~x ∈ Df . Recall that f is total if its domain is Df = Np.

3.3.2 Definition (Composition of partial functions). Let f1, . . . , fn ∈ Fp, g ∈ Fn. The composi-
tion h = g(f1, . . . , fn) is the element of Fp defined by

• h(~x) is not defined if one fi(~x) is not defined or if g(f1(~x), . . . , fn(~x)) is not defined,

• otherwise, h(~x) = g(f1(~x), . . . , fn(~x)).

3.3.3 Proposition. For all g ∈ Fp and h ∈ Fp+2, there exists a unique f ∈ Fp+1 such that ∀~x ∈ Np

• f(~x, 0) = g(~x),

• f(~x, y + 1) = h(~x, y, f(~x, y)).

If f(~x, y) is not defined, then f(~x, y + 1) is not defined.

Prof. J. Duparc 22

CHAPTER 3. FROM TURING MACHINES TO RECURSIVE FUNCTIONS

3.3.4 Definition (Minimisation). Let f ∈ Fp+1, then the partial function g(~x) = µy, f(~x, y) = 0
is defined by

• if there exists z such that f(~x, z) = 0 and ∀z′ < z, f(~x, z′) is defined, then g(~x) is the least
such z,

• otherwise, g(~x) is not defined.

3.3.5 Remark. Given A ⊆ Np+1 :

µy, (~x, y) ∈ A = µy, 1−̇χA(~x, y) = 0.

3.3.6 Definition (Recursive function). The set of all recursive functions is the least subset of⋃
n∈N Fn that contains

• all constants functions,

• all projections,

• the successor function,

and that is closed under

• composition,

• induction,

• minimisation.

3.3.7 Theorem. A function f ∈ Fp is (partial) recursive iff f is Turing computable.

Proof. ⇒ : Clear.

⇐ : The idea is to take a TM M that computes a partial function f ∈ Fp. The machine M starts
with x1 · · ·xp as input and

– if ~x 6∈ Df , then M never stops,

– if ~x ∈ Df , then M stops, accepts and f(~x) is written on the tape.

We show a more general result. Let M = 〈Q,Σ,Γ, δ, q0, qaccept, qreject〉 be a TM such that
Γ = {0, . . . , k − 1}, where 0 = t, and Q = {q0, . . . , ql}. We define a PR coding of Γ∗

Γ −→ N
u 7−→ due.

We show that ther eist a recursive function fM ∈ F1 such that on input u

– if M doesn’t stop or reject, then due 6∈ DfM ,

– if M accept with v as output, then fM(due) = dve.

We say that fM works as M “in the code”. We now define a coding for w ∈ Γ∗ : we read w
as a number in base k : if w = w0 · · ·wn, then

dwe = dw0 · · ·wne =

k∑
i=0

wik
i.

Prof. J. Duparc 23

3.3. RECURSIVE FUNCTIONS

This coding is surjective but not injective. Given dwe, we recover the letter wj from dwe by

letter(w, j) = Reminder(q(dwe, kj), k),

where q is the quotient and Reminder the reminder of the euclidian division. If j is greater
than the length of w, then letter(w, j) = 0, i.e. the blank symbol. At any time of the
computation, a configuration of the machine will be of the form

(word of the tape, current state, position of the head) .

The tape word is coded by dwe, the state qi is coded by i and the position of the head is a
integer p ∈ N. The code for such a configuration is α3(dwe, i, p). Recall that from a code
x of a configuration, we recover dwe = β1

3(x), i = β2
3(x) and p = β3

3(x). We define the set
ConfigM ⊆ N the set of correct codes of configurations of M, i.e.

x ∈ ConfigM ⇐⇒ β2
3(x) < |Q|.

We define a PR predicate NextConfigM ⊆ N2 such that (a, b) ∈ NextConfigM iff

– a, b ∈ ConfigM,

– if a codes the configuration (w, i, p) and if b codes the configuration (w′, i′, p′), then δ
yields in one step from (w, i, p) to (w′, i′, p′).

There is also a PR predicate InitConfigM ⊆ N such that x ∈ InitConfigM iff

– β1
3(x) = 0 or the input coded by β1

3(x) contains no 0,

– β2
3(x) = β3

3(x) = 0.

Define a PR function ComputeM : N2 −→ N such that if a is the code of an initial configuration
of M and t ∈ N, then ComputeM(a, t) will return the code of a configuration that M is in
after t many steps. Fix an integer e such that e is not the code of a configuration (for instance
e = α3(0, |Q|, 0)). Then

ComputeM(a, 0) =

{
a if a ∈ InitConfigM,
e otherwise,

ComputeM(a, t+ 1) = b ⇐⇒ (ComputeM(a, t), b) ∈ NextConfigM .

Define a partial function Timeaccept : N −→ N that returns thenumber os steps needed by M
to accept the output. There is 2 cases :

– if q0 is the accpeting state, then the function is constant 0,

– otherwise,

Timeaccept(a) = µt

 a ∈ InitConfigM,
ComputeM(a, t) 6= e,
β2

3(ComputeM(a, t)) = the number that codes qaccept.

Finally,
fM(a) = β1

3 (ComputeM(c,Timeaccept(c)) ,

where c = α3(a, 0, 0).

3.3.8 Corollary. The proof uses minimisation only once. Consequently, every TC function is a
partial function where minimisation is used only once.

Prof. J. Duparc 24

Chapter 4

Arithmatical hierarchy

The goal is to classify the sets of integers by formulas of some kind and by oracle Turing machines.

4.1 Σ0
n,Π

0
n and ∆0

n

4.1.1 Definition (Arithmetical hierarchy). The arithmetical hierarchy (Σ0
n,Π

0
n,∆

0
n) is defined

as follow :

• Σ0
1 is the class of all recursively enumerable sets,

• Π0
n is the class of all A ⊆ Np such that AC ∈ Σ0

n,

• ∆0
n = Σ0

n ∩Π0
n ,

• Σ0
n+1 =

{
∃x A | A ∈ Π0

n

}
.

4.1.2 Examples. • {p | p prime} ∈ ∆0
1,

• {n | n codes a TM that halts on empty input} ∈ Σ0
1 \Π0

1.

4.1.3 Lemma. Let A ⊆ Np+k, A ∈ Σ0
1. Then

B = {~y ∈ Nk | ∃~x ∈ Np, (~x, ~y) ∈ A} ∈ Σ0
1.

Proof. Given an enumerator EA of A, we construct EB , an enumerator of B as follow : it works
juste like EA but esases the first p components of eveny p+ k tuples that EA prints.

If B = {0} and A = C × B for some C ⊆ Np, we have B ∈ Σ0
1 and C does not need to be

recursively enumerable, neither does A.

4.1.4 Corollary. Let D ⊆ Np+k, D ∈ Π0
1. Then

E = {~y ∈ Nk | ∀~x ∈ Np, (~x, ~y) ∈ D} ∈ Π0
1.

Proof. EC ∈ Σ0
1.

4.1.5 Proposition. If B ∈ Np, then B ∈ Σ0
1 iff ∃A ⊆ Np+1, A ∈ ∆0

1 such that

B(~y) ⇐⇒ ∃x A(x, ~y).

25

4.1. Σ0
N ,Π

0
N AND ∆0

N

Proof. It goes back to the proof that a function if recursive if it is Turing computable. The whole
proof used only one minimization, all the rest was primitive recursive. We can reconstruct the proof
so that minimization is applied to a primitive recursive predicate µt P (t, ~x) = 1 may be expressed
by µt P (t, ~x) = 0.

4.1.6 Proposition. The classes Σ0
n and Π0

n are closed under finite union and finite intersection.

Proof. By orevious result, B0, B1 ∈ Σ0
n iff ∃A0, A1 ∈ ∆0

1 such that

B0 = ∃x1∀x2∃x3 · · ·Qnxn A0,

B1 = ∃x1∀x2∃x3 · · ·Qnxn A1.

By induction on n :

• If n = 1, then B0 = ∃x A0 and B1 = ∃x A1.

– B0 ∪B1 = ∃x (A0 ∪A1).

– (B0 ∩B1)(~y) ⇐⇒ ∃x A0(β1
2(x), ~y) ∧A1(β2

2(x), ~y).

• If n > 1, we assume that the result holds for n, and we show it holds for n+ 1.

–

(B0 ∪B1)(~y) ⇐⇒ ∃x1 (∀x2∃x3∀x4 · · · A0(~x, ~y)︸ ︷︷ ︸
∈Π0

n

) ∨ (∀x2∃x3∀x4 · · · A1(~x, ~y)︸ ︷︷ ︸
∈Π0

n

)

︸ ︷︷ ︸
∈Π0

n︸ ︷︷ ︸
∈Σ0

n+1

.

–

(B0 ∩B1)(~y)

⇐⇒ ∃x1 (∀x2∃x3∀x4 · · · A0(β1
2(x1), x2, . . . , ~y)︸ ︷︷ ︸

∈Π0
n

) ∨ (∀x2∃x3∀x4 · · · A1(β2
2(x1), x2, . . . , ~y)︸ ︷︷ ︸

∈Π0
n

)

︸ ︷︷ ︸
∈Π0

n︸ ︷︷ ︸
∈Σ0

n+1

.

It is similar to show that Π0
n is also closed under finite union and finite intersection.

4.1.7 Proposition. Let A ⊆ Np+k, n > 0.

• If A ∈ Σ0
n, then if

B(~y) ⇐⇒ ∃~x ∈ Np A(~x, ~y)

we have B ∈ Σ0
n.

• If A ∈ Π0
n, then if

B(~y) ⇐⇒ ∀~x ∈ Np A(~x, ~y)

we have B ∈ Π0
n.

Prof. J. Duparc 26

CHAPTER 4. ARITHMATICAL HIERARCHY

Proof. • If B ∈ Σ0
n, then there exists A ∈ ∆0

1 such that

B(~x, ~y) ⇐⇒ ∃z1∀z2∃z3 · · ·Qnzn A(~z, ~x, ~y).

Hence

∃~x B(~x) ⇐⇒ ∃~x∃z1∀z2∃z3 · · ·Qnzn A(~z, ~x, ~y)

⇐⇒ ∃x∀z2∃z3 · · ·Qnzn A(β1
p+1(x), β2

p+1(x), · · · , ~y)

∈ Σ0
n.

• It is imediate by complementation.

4.1.8 Proposition. For all n > 0, Σ0
n ∪Π0

n ⊆ ∆0
n+1.

Proof. By induction on n.

• If n = 1.

– Let B ∈ Σ0
1, B = ∃x A for some A ∈ ∆0

1. Hence A ∈ Π0
1, and therefore B ∈ Π0

2. Si
Σ0

1 ⊆ Π0
2.

– If C ⊆ Np, C ∈ Π0
1, then C ′ = N× C ∈ Π0

1 and ∃x C ′ = C. So C ∈ Σ0
2 and Π0

1 ⊆ Σ0
2.

• Assume the hypothesis holds for n.

– Let B ∈ Σ0
n+1, B = ∃x A for some A ∈ Π0

n. Hence B = ∃x A, A ∈ Π0
n+1 (by induction

hypothesis) and so B ∈ Σ0
n+2.

– Let C ∈ Π0
n+1, C ′ = N × C ∈ Π0

n+1. Hence C = ∃x C ′, C ′ ∈ Π0
n+1 (by induction

hypothesis) and so C ∈ Σ0
n+2.

4.2 Turing machine with oracle

4.2.1 Definition (Turing machine with oracle). A Turing machine with an orable O ⊆ N is
a regular TM wath an extra tape on which at the begening of the computation, the caracteristic
function of O is written (it’s an infinite word !).

4.2.2 Definition (Jump). Given O ⊆ N, the jump if O is the subset of N defined by

O′ =
{
i ∈ N | i = dMOe, and dMOe stops on input i

}
.

Here, i is the code of a TM, and the oracle O does not belong to the code.

4.2.3 Remark. ∅′ correspond to the halting problem. So ∅′ ∈ Σ0
1 \Π0

1.

4.2.4 Theorem. Σ0
n 6= Π0

n.

Proof. 1. ∀n ≥ 0, ∀k > 0, we show that there exist a universal set for Σ0
n subsets of N. We only

do it for n = 3 and k = 1, for simplicity of the notations. Let A ⊆ N.

A ∈ Σ0
3iffA(x) ⇐⇒ ∃y3∀y2∃y1 B(y1, y2, y3, x),

Prof. J. Duparc 27

4.2. TURING MACHINE WITH ORACLE

where B ∈ Σ0
1, i.e. B is a recursively enumerable predicate. Take a universal set for RE

subsets of N4, i.e. U ⊆ N5 with

U(i, y1, y2, y3, x) ⇐⇒ i codes a TM that accepts (y1, y2, y3, x).

We have U ∈ Σ0
1. We may view U as the langage recognized by a universal TM that first

checks weather i is the code of a TM, than works as i on input (y1, y2, y3, x). Define U3 ⊆ N2

by
U3(i, x) ⇐⇒ ∃y3∀y2∃y1 U(i, y1, y2, y3, x).

Then U3 ∈ Σ0
3 abs is universal for Σ0

3 subsets of N.

• U3 ∈ Σ0
3 by definition.

• ∀A ⊆ N that is Σ0
3, there is an index i of A such that U(i, x) ⇐⇒ A(x).

Now, consider the following predicate P ⊆ N :

P (i) ⇐⇒ U3(i, i).

We have that P ∈ Σ0
3 \ Π0

3 By contradition, if P ∈ Π0
3, than we would have PC ∈ Σ0

3. Si PC
has an index j ∈ N, i.e. ∀x ∈ N, PC(x) ⇐⇒ U3(j, x). But

j ∈ PC ⇐⇒ U3(j, j)

⇐⇒ j ∈ P,

which is absurd. So P 6∈ Π0
3.

4.2.5 Corollary. The arothmetical hierarchy is strict.

Proof. ∀n > 0, ∃A ∈ Σ0
n \Π0

n. Hence AC ∈ Π0
n \ Σ0

n. We know that

∆0
1 (Σ0

1,Π
0
1,

∆0
n+1 = Σ0

n+1 ∩Π0
n+1,

Σ0
n ∪Π0

n ⊆ Σ0
n+1,Π

0
n+1.

Hence ∆0
n ⊆ ∆0

n+1 (Σ0
n+1,Π

0
n+1.

Prof. J. Duparc 28

Chapter 5

Arithmetisation of the first order
logic and Gödels first
incompleteness theorem

Let P denote the Peano arithmetic. The set LP contains

• the constant symbols 0 and 1,

• the function symbol s of arity 1,

• two function symbols + and × of arity 2.

This is a langage with equality. From now on, N = 〈N, 0, 1, s,+,×〉 is the standard model.

5.0.6 Axioms (Peano).

(A1) : ∀x0 ¬s(x0) = 0.

(A2) : ∀x0∃x1 (¬x0 = 0→ s(x1) = x0).

(A3) : ∀x0,∀x1 (s(x0) = s(x1)→ x0 = x1).

(A4) : ∀x0 x0+0 = x0.

(A5) : ∀x0∀x1 x0+s(x1) = s(x0+x1).

(A6) : ∀x0 x0×0 = 0.

(A7) : ∀x0∀x1 x0×s(x1) = (x0×x1)+x0.

Induction scheme : ∀n ∈ N, ∀φ ∈ F(LP) whose free variables are amond x0, . . . , xn,

∀x1 · · · ∀xn ((φ[0, x1, . . . , xn] ∧ ∀x0 (φ[x0, . . . , xn]→ φ[s(x0), x1, . . . , xn]))→ ∀x0 φ[x0, . . . , xn]) .

5.0.7 Remark. Up to isomorphism, there exist 2ℵ0 countable models of P that are not isomorphic.
N s one of them.

5.0.8 Notation. For n ∈ N, we write

n = s(s(· · · s︸ ︷︷ ︸(0) · · ·)).

29

Here is a bunch of interesting facts :

1. P ` ∀x0 0+x0 = x0.

2. P ` ∀x0∀x1 s(x1+x0) = s(x1)+x0.

3. P ` ∀x0 1+x0 = s(x0).

4. P ` ∀x0∀x1 x0+x1 = x1+x0.

5. P ` ∀x0∀x1∀x2 x0+(x1)+x2) = (x0+x1)+x2.

6. P ` ∀x0 0×x0 = 0.

7. P ` ∀x0 x0×1 = x0.

8. P ` ∀x0 1×x0 = x0.

9. P ` ∀x0∀x1∀x2 x0×(x1+x2) = (x0×x1)+(x0×x2).

10. P ` ∀x0∀x1∀x2 (x0×x1)×x0 = x0×(x1×x2).

11. P ` ∀x0∀x1 x0×x1 = x1×x0.

12. P ` ∀x0∀x1∀x2 (x0+x2 = x1+x2)→ x0 = x1.

13. P ` ∀x0∀x1 ¬x1 = 0→ ¬x0+x1 = 0.

14. P ` ∀x0∀x1 x0+x1 = 0→ x0 = 0 ∧ x1 = 0.

15. P ` ∀x0∀x1 x0+x1 = x0 → x1 = 0.

16. For now, we write x0 ≤ x1 to abbreviate ∃x2 x2+x0 = x1, and x0 < x1 to abbreviate
x0 ≤ x1 ∧ ¬x0 = x1. We have P ` ∀x0 x0 ≤ x0 (reflexivity).

17. (Transitivity) P ` ∀x0∀x1∀x2 (x0 ≤ x1 ∧ x1 ≤ x2)→ x0 ≤ x2.

18. (Antisymetry) P ` ∀x0∀x1∀x2 (x0 ≤ x1) ∧ (x1 ≤ x0)→ x0 = x1.

19. (Compatibility with +) P ` ∀x0∀x1∀x2 (x0+x2 ≤ x1+x2)↔ x0 ≤ x1.

20. P ` ∀x0∀x1x0 ≤ x1 ∨ x1 ≤ x0.

21. (Compatibility with ×) P ` ∀x0∀x1∀x2 x0 ≤ x1 → x0×x2 ≤ x1×x2.

22. P ` ∀x0∀x1(¬x0 = 0 ∧ ¬x1 = 0)→ ¬x0×x1 = 0.

23. P ` ∀x0∀x1∀x2(x0×x2 = x1×x2)→ (x0 = x1 ∨ x2 = 0).

24. ∀n ∈ N, P0 ` n+ 1 = s(n).

25. ∀m,n ∈ N, P0 ` m+ n = m+ n.

26. ∀m,n ∈ N, P0 ` m×n = m · n.

27. ∀n ∈ N \ {0}, P0 ` ¬n = 0.

28. ∀m,n ∈ N, m 6= n, P0 ` ¬m = n.

29. ∀n ∈ N, P0 ` ∀x0 x0 ≤ n→
∨n
i=0 x0 = i.

Prof. J. Duparc 30

CHAPTER 5. ARITHMETISATION OF THE FIRST ORDER LOGIC AND GÖDELS FIRST
INCOMPLETENESS THEOREM

30. ∀n ∈ N, P0 ` ∀x0 (x0 ≤ n ∨ n ≤ x0).

We denote P0 as the Peano arithmetic without the Induction Scheme. This is a very weak
theory, in which one cannot prove that + is commutative. We first show that every model of P0

“starts” with a copy of N.

5.0.9 Definition (Initial segment, final extension). LetM and N be two models of P0, such that
N is a substructure of M. We say that N is an initial segment of M if ∀a ∈ |N |, ∀b ∈ |M|,

1. if M |= b ≤ a, then b ∈ |N |,

2. if b 6∈ |N |, then M |= a ≤ b.

We also say that M is a final extension of N .

5.0.10 Theorem. Let M be a model of P0. Then

N = {a ∈ |M| | ∃n ∈ N such that a = n}

is

1. isomorphic to N,

2. an initial segment of M.

Proof. 1. By 25., 26. and 28.

2. By 29. and 30.

5.1 Representable functions

Recall that Fp is the set of all total functions Np −→ N.

5.1.1 Definition (Representable function). Let f ∈ Fp be a total function, and Φ[x0, . . . , xp] be
a formula of L0, the langage of P0. We say that Φ[x0, . . . , xp] represents f if for all p-tuple
(n1, . . . , np)

P0 ` ∀x0 Φ[x0, n1, . . . , np]↔ x0 = f(~n).

We say that f is representable by Φ. We say that a total function g is representable if it is
representable by some formula of L0.

5.1.2 Definition (Representable set). Let A ⊆ Np be a set, and Φ[x1, . . . , xp] be a formula of L0.
We say that Φ[x1, . . . , xp] represents A if ∀~n ∈ Np,

• if ~n ∈ A, then P0 ` Φ[n1, . . . , np],

• if ~n 6∈ A, then P0 ` ¬Φ[n1, . . . , np].

5.1.3 Remark. A set A ⊆ Np is representable iff χA is representable. Indeed :

• If Φ[x1, . . . , xp] represents A, then

Θ[x0, . . . , xp] : (Φ[x1, . . . , xp] ∧ x0 = 1) ∨ (¬Φ[x1, . . . , xp] ∧ x0 = 0)

represents χA.

Prof. J. Duparc 31

5.1. REPRESENTABLE FUNCTIONS

• If Ψ[x0, . . . , xp] represents χA, then

Θ[x1, . . . , xp] : Ψ[1, x1, . . . , xp]

represents A.

5.1.4 Theorem (Chinese reminder theorem). Let n1, . . . , nk ∈ N\{0} be pairwise coprimes. Then,
∀a1, . . . , ak ∈ N, ∃a ∈ N such that

a ≡ ai (ni).

5.1.5 Lemma. There exists a total function β : N3 −→ N such that

1. β is recursive,

2. β is representable,

3. β has the property that ∀p ∈ N and for every sequence (n1, . . . , np) ∈ Np, there exists a, b ∈ N
such that

β(i, a, b) = ni, ∀1 ≤ i ≤ p.

Proof. This makes use of the Chinese reminder theorem. We define β(i, a, b) to be the reminder of
b by a(i+ 1) + 1. It is a recursive function. Define

Φ[x0, . . . , x4] : x3 = (x4×s(x2×s(x1))+x0

∧ x0 < s(x2×s(x1)).

Then β is represented by

Φβ [x0, . . . , x3] : ∃x4 Φ[x0, . . . , x3]

∧ (∀x4 < x0 ¬Φ[x0, . . . , x4].

Given a sequence (a0, . . . , an), we choose m > n+ 1 such that a = m! > ai, ∀0 ≤ i ≤ n. Then, all
integer a(i+1)+1 are pairwise coprime, since if c|a(i+1)+1, c|a−j+1)+1, then c|a(j−1) = m!(j−1).
Hence c ≤ m which contradicts the hypothesis that c|m!(i+1)+1. By the Chinese reminder theorem,
we get b ∈ N such that b ≡ ai (a(i+ 1) + 1). Since ai ≤ a(i+ 1) + 1, we get ai = β(i, a, b).

5.1.6 Theorem (Representation theorem). Every (total) recursive function is representable.

Proof. • The successor function s is represented by

Θ[x0, x1] : x0 = s(x1).

• The projection function P ip is represented by

Θ[x0, . . . , xp] : x0 = xi.

• The constant function x 7−→ n is represented by

Θ[x0, . . . , xp] : x0 = n.

• We show that the set of representable functions is closed under composition. Let f1, . . . , fn ∈
Fp, g ∈ Fn be represented by Φ1, . . . ,Φn,Ψ. Then g(f1, . . . , fn) is represented by

Θ[x0, . . . , xp] : ∃y1 · · · ∃yn Φ[x0, y1, . . . , yn] ∧
n∧
i=1

Φi[yi, x1, . . . , xp].

Prof. J. Duparc 32

CHAPTER 5. ARITHMETISATION OF THE FIRST ORDER LOGIC AND GÖDELS FIRST
INCOMPLETENESS THEOREM

• We show that given a subset A ⊆ Np+1 represented by Φ[x0, . . . , xp], the function

f(x1, . . . , xp) = µy (y, ~x) ∈ A

is representable, if it is total. Indeed, it is represented by

Θ[x0, . . . , xp] : Φ[x0, . . . , xp] ∧ (∀x < x0 ¬Φ[x, x1, . . . , xp]) .

• We show that recursion of representable function is still a representable function. We make
use of the previous lemma. Given g ∈ Fp, h ∈ Fp+2 that are represented by Φg[x0, . . . , xp]
and Φh[x0, . . . , xp+2]. The function f ∈ Fp+1 defined by

– f(~x, 0) = g(~x),

– f(~x, xp+1 + 1) = h(~x, xp+1, f(~x, xp+1))

is representable. We define

Φf [x0, ~x, xp+1] : ∃y1∃y2 (∃y0 Φβ [y0, 1, y1, y2])

∧ Φg[y0, ~x]

∧ Φβ [x0, s(xp+1), y1, y2]

∧ ∀y3 < xp+1∃y4∃y5(Φβ [y4, s(y3), y1, y2]

∧ Φβ [y5, s(s(y2)), y1, y2]

∧ Φh[y5, ~x, y3, y4]).

5.2 Arithmetization of syntax

We code terms, formulas and proofs by integers.

5.2.1 Lemma. Let p, n ∈ N, k1, . . . , kn ∈ F1, g ∈ Fp, h ∈ Fn+1, all PR functions, and ∀y > 0,
∀1 ≤ i ≤ n, ki(y) ≤ y. Then the unique function defined by

• f(0, ~x) = g(~x),

• f(y, ~x) = h(y, f(k1(y), ~x), . . . , f(kn(y), ~x))

is PR.

Proof. Define φ by

• φ(0, ~x) = 2g(~x),

• φ(y + 1, ~x) = φ(y, ~x)pγy+1,

where pi is the i-th prime number,

γ = h(y + 1, δ(k1(y + 1), φ(y, ~x)), · · · , δ(kn(y + 1), φ(y, ~x))),

and δ(i, x) = µz x is not divided by pz+1
i . Then φ is PR and

f(y, ~x) = δ(y, φ(y, ~x)).

Prof. J. Duparc 33

5.2. ARITHMETIZATION OF SYNTAX

5.2.2 Definition (Gödel number of a term). Given a term t from L0, we define]t, its Gödel
number :

• if t = 0, then]t = α3(0, 0, 0),

• if t = xn, then]t = α3(n+ 1, 0, 0),

• if t = s(t1), then]t = α3(]t1, 0, 1),

• if t = t1+t2, then]t = α3(]t1,]t2, 2),

• if t = t1×t2, then]t = α3(]t1,]t2, 3).

5.2.3 Remark. This coding is injective.

5.2.4 Lemma. The set {]t | t is a term of L0} is PR.

Proof. Exercise.

5.2.5 Definition (Gödel number of a formula). Given a formula φ from L0, we define]φ, its Gödel
number :

• if φ : t1 = t2, then]φ = α3(]t1,]t2, 0),

• if φ : ¬ψ, then]φ = α3(]ψ, 0, 1),

• if φ : ψ1 ∧ ψ2, then]φ = α3(]ψ1,]ψ2, 2),

• if φ : ψ1 ∨ ψ2, then]φ = α3(]ψ1,]ψ2, 3),

• if φ : ψ1 → ψ2, then]φ = α3(]ψ1,]ψ2, 4),

• if φ : ψ1 ↔ ψ2, then]φ = α3(]ψ1,]ψ2, 5),

• if φ : ∃xn ψ, then]φ = α3(]ψ, n, 6),

• if φ : ∀xn ψ, then]φ = α3(]ψ, n, 7).

5.2.6 Remark. This coding is also injective.

5.2.7 Lemma. The set {]φ | φ is a formula of L0} is PR.

Proof. Exercise.

5.2.8 Lemma. The following sets are PR :

• Θ0 = {(]t, n) | t is a term in which xn does not occur},

• Θ1 = {(]t, n) | t is a term in which xn does occur} = ΘC
0 ,

• Ω0 = {(]φ, n) | φ is a formula in which xn does not occur},

• Ω′0 = {(]φ, n) | φ is a formula in which xn does occur} = ΩC0 ,

• Ω1 = {(]φ, n) | φ is a formula in which xn does not have free occurence},

• Ω1 = {(]φ, n) | φ is a formula in which xn does not have bounded occurence},

• Ω3 = {]φ | φ is a closed formula},

Prof. J. Duparc 34

CHAPTER 5. ARITHMETISATION OF THE FIRST ORDER LOGIC AND GÖDELS FIRST
INCOMPLETENESS THEOREM

• Ω4 = {(]φ, n) | φ is a formula in which xn does have a free occurence} = ΩC1 .

5.2.9 Lemma. There exist two PR functions Substt,Substf ∈ F3 such that for all terms t and u,
and for all formula φ,

Substt(n,]t,]u) =]u[t/xn]

Substf (n,]t,]φ) =]φ[t/xn].

We make the following Hilbert style notion of a proof.

5.2.10 Definition (Proof). Let T be a L-theory. A formal proof from T of a formula φ is a
finite sequence 〈φ0, . . . , φn〉 such that ∀0 ≤ i ≤ n, either

• φi ∈ T

• φi is a logical axiom,

• ∃j, k < i such that φk : φj → φi (modus ponens),

• ∃j < i and a variable x such that φi : ∀x φj (generalization).

The set of logical axioms contains exactly all formulas of the form

• ∃x φ↔ ¬∀x ¬φ,

• ∀x (φ→ ψ)→ (φ→ ∀x ψ), where x has no free occurence in ψ,

• ∀x φ → φ[t,x], where t is a term, φ without free occurence of x that lies in the scope of a
quantifier that bounds a variable from t,

• all tautologies from 1st order logic.

We code formulas of propositional calculus on variables A1, A2, . . . in the same way as for
forlumas inf 1st order logic. Without surprise,

Prop = {]P | P is a propositional formula}

is PR.

5.2.11 Lemma. The function

E : N2 −→ N

(x, k) 7−→
{
δk(P) if x =]P
0 if x 6∈ Prop

is PR.

Proof. Suppose that x =]P , for some formula P (so x ∈ Prop).

• If β3
3(x) = 0, then P = An, for some n ∈ N. So

E(x, k) =

{
1 ifπ(β1

3(x))|k
0 otherwise.

• If β3
3(x) = 1, then P = ¬Q, for some formula Q. So

E(x, k) = 1−̇E(β1
3(x), k).

Prof. J. Duparc 35

5.2. ARITHMETIZATION OF SYNTAX

• If β3
3 = 2, then P = Q1 ∧Q2, for some formulas Q1 and Q2. So

E(x, k) = E(β1
3(x), k)E(β2

3(x), k).

• ...

5.2.12 Theorem (Decidability of propositional calculus). The set of teutologies

PropTaut = {]P | P is a tautology}

is PR.

Proof. For all k ∈ N we define a thruth value function δk : {An}n∈N −→ 2 by

δk(An) =

{
1 if π(n)|k
0 otherwise,

implicitly extended to all formulas. Every truth value function δ : {An}n∈N −→ 2 and every c ∈ N,
there exists k ∈ N such that ∀i ≤ c we have δ(Ai) = δk(Ai). Indeed, take k =

∏c
i=0 π(i)δ(Ai).

Remark that k ≤ π(c)!. Whenever An occurs in P , we have]An = n <]P . If P is a formula,
then P is a tautology iff ∀k ≤ π(]P) we have δk(P) = 1. To finish up the proof, we make ue of
the previous lemma. Remark that ∀x ∈ N, x ∈ PropTaut iff x ∈ Prop and ∀k ≤ π(x)! we have
E(x, k) = 1.

5.2.13 Theorem. The set

Taut = {]φ | φ is a 1st order tautology}

is PR.

Proof. We define γ : N −→ N, a PR function such that if x =]φ, where φ is a 1st order formula,
then γ(x) =]Pφ, where Pφ is a propositional formula with variables An0

, . . . , Ank
, such that

1. ni =]φi, 0 ≤ i ≤ k,

2. φi is either atomic, of the form ∃x θ or of the form ∀x θ,

3. (Pφ)[φi/Ani
] = φ.

Then, for all 1st order formula, we have]φ ∈ Taut iff γ(]φ) ∈ PropTaut. Define γ as follow : if
x ∈ Form

• if β3
3(x) ∈ {0, 6, 7}, then γ = α3(x, 0, 0),

• if β3
3(x) = 1, then P¬φ = ¬Pφ, and γ(x) = α3(γ(β1

3(x)), 0, 1),

• if β3
3(x) ∈ {2, 3, 4, 5}, then γ(x) = α3(γ(β1

3(x)), γ(β2
3(x)), γ(β3

3(x))),

• if β3
3(x) > 7, then γ(x) = 0.

Prof. J. Duparc 36

CHAPTER 5. ARITHMETISATION OF THE FIRST ORDER LOGIC AND GÖDELS FIRST
INCOMPLETENESS THEOREM

Define

Ax1 = {](∃x φ↔ ¬∀x¬φ) | φ is a formula, and x is a variable},
Ax2 = {]((∀x (φ→ ψ))→ (φ→ ∀x ψ))) | x doesn’t occur free in φ},
Ax3 = {]((∀x φ)→ φ[t/x]) | t is a term, and no variable catpure occurs},
Ax = Ax1 ∪Ax2 ∪Ax3 ∪Taut .

5.2.14 Theorem. The set Ax is PR.

5.2.15 Remark. By a theory we mean a 1st order theory on some finite langage, assuming that
we have coded fomulas in the same fashion as for L0.

5.2.16 Definition (Recursive theory, decidable theory). • A theory T is called recursive if
the set of codes {]φ | φ ∈ T} is recursive.

• A theory T is called decidable if

Th(T) = {]φ | T ` φ, and φ is closed}

is PR.

5.2.17 Examples. 1. The theory ∅ is recursive and Th(∅) is the set of clodes valid formulas.

2. P0 and P are recursive.

3. The theory P0 ∪ {0 = 1} is decidable.

5.3 Coding proofs

Define

Ω : N<ω −→ N
ε 7−→ 1

(x0, . . . , xk) 7−→
k∏
i=0

π(i)xi .

Let δ : N2 −→ N be the PR function defined by

δ(i, x) = µy ≤ x π(i)y+1|x.

We have δ(i,Ω(x0, . . . , xk)) = xi, ∀0 ≤ i ≤ k. Define the PR function

lg : N −→ N

x 7−→
{

1 + max{i | π(i)|x} if x > 1
0 if x ≤ 1.

Remark that lg(Ω(x0, . . . , xk)) = k + 1 if xk 6= 0.

5.3.1 Notation. For 〈φ0, . . . , φk〉 = p a finite sequence of formulas, we note

]]p = Ω(]φ0, . . . ,]φk).

Prof. J. Duparc 37

5.3. CODING PROOFS

5.3.2 Theorem. Let T be a recursive theory. Then

Proof(T) = {(m,n) | n =]φ,m =]]p, p is a proof of φ from T}

is recursive.

Proof. (m,n) ∈ Proof(T) iff

• ∀i ≤ lg(m) we have δ(i,m) ∈ Form,

• δ(lg(m) · −1,m) = n (the last formula of the proof is φ),

• ∀i < lg(m), one of the following holds :

– δ(i,m) ∈ Ax,

– δ(i,m) ∈ {]ψ | ψ ∈ T},
– ∃j, k < i such that

δ(j,m) = α3(δ(k,m), δ(i,m), 4)

(modus ponens),

– ∃j < i, ∃p < m such that δ(i,m) = α3(δ(m, j), p, 6).

5.3.3 Corollary. If T is a recursive theory, then Th(T) is recursively enumerable.

Proof. We have Th(T) = {n | ∃m such that (n,m) ∈ Proof(T)}.

5.3.4 Corollary. If T is recursive and complete theory, then T is decidable.

Proof. By previous corollary, Th(T) is recursively enumerable. We show that N \ Th(T) is also
recursively enumerable. ∀x ∈ N, x 6∈ Th(T) iff x 6∈ Ω3 (x doesn’t code a closed formula) or
α3(x, 0, 1) ∈ Th(T) (the code of the negation of the formula coded by x is in Th(T)), since T is
complete.

5.3.5 Theorem. Assume T is recursive, consistant (T 6`c ⊥), and that P0 ⊆ T . Then T is not
decidable.

Proof. Towards a contradiction, assume that T is decidable. We consider

Θ = {(m,n) | m =]Φ[x0] where x0 is the only (if any) ???}.

Since T is decidable, Θ is decidable also because

1. one can decide wether m is the Gödel number of a formula Φ[x0],

2. one can decide wether Substf (0,]n,m) ∈ Th(T).

Therefore B = {n ∈ N | (n, n) 6∈ Θ} is recursive. By the representation theorem, B is representable
by a formula ΦB [x0], i.e. ∀n ∈ N

• if n ∈ B, then P0 ` ΦB [n],

• if n 6∈ B, then P0 ` ¬ΦB [x0].

Consider g =]ΦB [x0]. We see that

Prof. J. Duparc 38

CHAPTER 5. ARITHMETISATION OF THE FIRST ORDER LOGIC AND GÖDELS FIRST
INCOMPLETENESS THEOREM

• if g ∈ B, then P0 ` ΦB [x0], so (g, g) 6∈ Θ, which implies T 6` ΦB [x0]. But P0 ⊆ T , so it is a
contradiction.

• if g 6∈ B, then P0 ` ¬ΦB [x0], then also (g, g) ∈ Θ which implies T ` ΦB [x0], another
contradiction.

5.3.6 Corollary (Gödel’s first incompleteness theorem). The set

S = {]Φ | Φ is a closed universaly valid formula}

is not recursive.

Proof. Since P0 = {A1, . . . , A7} is finite, it is equivalent to ΦP0
=
∧7
i=1Ai. The formula ΦP0

→
Φ belongs to S iff P0 ` Φ (by Gödel’s completeness theorem). Therefore, decidability of the
membership in S implies decidability of P0.

5.3.7 Theorem (Gödel’s second incompleteness theorem). Let T be a consistant, recursive theory
such that P ⊆ T . Then T doesn’t prove its own consistency.

Proof. We define

P = Proofs

= {(a, b) | a =]Φ, a closed formula, and b is the Gödel number of a proof of Φ in T},
P0 = Proofs0

= {(a, b) | a =]Φ, a closed formula, and b is the Gödel number of a proof of Φ in P0}.

Both Proofs and Proofs0 are recursive, so representable by P [−,−] and P0[−,−], formulas of L0.
Define

Cons(T) : ¬∃x0 P (](0 = 1), x0).

We have that T ` Cons(T) iff T is consistant. Notice that if ∃x0 ∈ N such that N |= P (](0 = 1), x0),
then N |= ¬Cons(T), and so ∃n ∈ N which is the Gödel numbering of a formal proof of the formula
0 = 1 inside T . However, on can have M |= P and M |= ¬Cons(T), together with T being
consistant. The reason is that if one takes the “integer” (that can be non standard) in M that
witnesses the proof of 0 = 1, the integer being non standard will not lead to the proof of 0 = 1.

To proceed further, we need P and P0 to statisfies additional properties :

1. ` ∀x0∀x1 (P0(x0, x1)→ P (x0, x1)),

2. P and P0 are Σ0
1 formulas,

3. if Φ is a closed Σ0
1 formula, then

P ` Φ→ ∃x1 P0(]Φ, x1).

Point 1. comes from the proof of the representation theorem : when we proved it, we proved
something stringer : every recursive total function is representable by a Σ0

1 formula.

5.3.8 Lemma. Let N be a L0-structure and M be a final extension of N . Let Φ[x1, . . . , xp] be a
Σ0

1 formula, and a1, . . . , ap ∈ |N |. Then

N |= Φ[a1, . . . , ap] implies M |= Φ[a1, . . . , ap].

Prof. J. Duparc 39

5.3. CODING PROOFS

Proof. We show that the set of all formulas Ψ[x1, . . . , xp] satisfying the proposition’s conditions
contains all Σ0

1 formulas. Remark that

• this set contains all quantifiers-free formulas,

• this set is closed under ∧ and ∨,

• this set is closed under ∃ (because N �M),

• this set is closed under bounded universal quantifiers (because M is a final extension of N).

Define
P1 = P0 ∪ {Φ→ ∃x1 P0(]Φ, x1) | Φ is a closed formula}.

5.3.9 Lemma. If Ψ ∈ P1, then P ` Ψ.

5.3.10 Lemma. If T is a consistant recursive theory that proves all formulas of P1, then T does
not prove its own consistency.

5.3.11 Proposition. Let Φ be a closed Σ0
1 formula of L0. Then

N |= Φ→ ∃x1 P0(]Φ, x1).

Proof. Assume Φ holds in N. We show that P0 ` Φ. For this, weshow that Φ holdsin every model
of P0.

Prof. J. Duparc 40

Index

— Symbols —
Reg . 8
∆0
n . 25

Π0
n . 25

Σε . 8
Σ0
n . 25
−̇ . 18
ε . 8
]]p . 37
] . 34

— A —
Accepting state . 13
Arithmetical hierarchy . 25

— B —
Blank symbol .13
Bounded minimisation . 20

— C —
Case study . 20
Composition . 17, 22
Concatenation . 9
Configuration .13
Control state . 13
Counter . 11

automaton . 11

— D —
Decidable

theory . 37
Decider .14
DFA . 7, 8

— E —
Enumerator . 15

— F —
Final extension . 31
Finite automaton

deterministic . 7
non deterministic . 8

Fp .22

— G —
Gödel

number
of a formula . 34
of a term . 34

Goodstein sequence . 5

— I —
Induction . 17
Induction scheme . 29
Initial segment . 31
Initial state .13

— J —
Jump .27

— K —
k-tape Turing machine .14

— L —
L .7, 8, 13

— M —
µ . 20
Multitape Turing machine 14

— N —
Non deterministic

Turing machine . 14

— P —
Partial function .18
PR . 18
Predicate . 21
Primitive recursive

function .17
set . 18

Projection . 17
Proof . 35
Pushdown automaton . 12

41

INDEX

— R —
Recursive

theory . 37
Recursively enumerable langage15
Regular expression .10
Regular lagage .8
Rejecting state . 13
Representable

function .31
set . 31

Rn . 17
Rule .12

— S —
Stack . 11

alphabet . 12
Star operation . 9
State . 7, 8, 13

accepting . 7, 8
initial . 7, 8

Successor function . 17

— T —
Terminal . 12
Total function . 18
Transition function . 13
Turing

decidable . 14
recognizable .14

Turing computable function 18
Turing machine .13

with oracle .27

— U —
Universal Turing machine15

— V —
Variable . 12
Variable substitution . 19

— W —
Working alphabet . 13

Prof. J. Duparc 42

	Introduction
	Towards Turing machines
	Finite automatons
	Counter automatons and pushdown automatons
	Turing machines

	From Turing machines to recursive functions
	Primitive recursive functions
	Coding sequences of integers
	Recursive functions

	Arithmatical hierarchy
	n0, n0 and n0
	Turing machine with oracle

	Arithmetisation of the first order logic and Gödels first incompleteness theorem
	Representable functions
	Arithmetization of syntax
	Coding proofs

