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Chapter 1

Tableaux and partitions

1.1 Definitions

We denote by &,, the symmetric group on n elements.
Reminders 1.1.1. 1. If (i1 ---ig), ™ € S, then

7 iy i) = (w(iy) - w(ig).

2. Each element of &, can be decomposed into a product of disjoint
cycles in a unique way (up the order of the terms). Moreover, disjoint
cycles commutes.

If o,p € G, are conjugated and have disjoint cycles decompositions
0 =o01---0, and p = p1---p;, sorted by decreasing length, then clearly
each o; is conjugated to a p;, and conversely. There is a one-to-one corre-
spondence between the disjoints cycles in the decomposition of o and those
of p. Moreover, conjugates of o; have the same length of ¢;. Therefore we
come to the following result :

Proposition 1.1.2. Let g,p € &, be two permutations having disjoint cy-
cles decompositionso = o1 --- 0 and p = p1---p;- If o and p are conjugated,
then k =1 and {length o;}i<, = {length p;}i<i, seen as multisets.

We introduce now a more convenient object to work with.

Definition 1.1.3 (Partition). Let n € N. A partition of n is a sequence
A= (A1,..., ) satisfying

1. A& > > >0,
2. Zle)\z:n

We adopt the convention that (A1,...,A\x) = (A1,...,A,0,0,...), that is,
we can add Os without changing the partition. We note A - n and by P(n)
the set of all partitions of n.



Take 0 € &,,. As disjoint cycles commutes, we can define A(co) to be
the list of lengths of the disjoints cycles in the decomposition of ¢ plus the
trivial permutations (i), sorted in decreasing order. We have that \(o) is a
partition of n, which we call the type of o.

Corollary 1.1.4. Two permutations are conjugate iff they have the same
type.

Corollary 1.1.5. The number of conjugacy classes of &y, is |P(n)|.
Remark 1.1.6. Let 0 € &,. Consider (o) = (A1,...,Ax), and denote

m; = |{j | \j = i}|. By combinatorial observations :

1

k
| Cl(o)| = n!H

Definition 1.1.7 (Young diagram). Let A = (A1,...,A\z) = n. Then the
Young diagram [A] of X is the shape obtained by the following method : put
A; boxes in the ith row.

Examples 1.1.8. 1. Consider A = (3,2) - 5. Then

|

(Al =

2. Consider A = (3,3,2,1) 9. Then

N =L

Definition 1.1.9 (Young subgroup). Let A = (A1,...,\x) F n. The Young
subgroup of &,, corresponding A is

Gx =6 X St a4a) X
Remark that &, = H/\ie)\ Sy,

Example 1.1.10. If A =(3,3,2,1) - 9, then
G =6(1231 X Gas56) X G781 X Sfgy.

Definition 1.1.11 (Young tableau). Let A - n. A (Young-) tableau is a
bijection between the Young diagram [A] and the set {1,...,n}. In other
terms, it consists in a filling of the Young diagram [A] with the elements of

{1,...,n}.
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Example 1.1.12. Consider A = (3,3,2,1) - 9. Then

2|3
5|6
8

7
9|1
5

[o]~[i][—
EISEEE

T = and S =

are both Young tableaux of shape .

1.2 Dominance

Definition 1.2.1 (Dominance of partitions). Let A = (Ag,..., A\x),p =
(11, ..., pg) B n. We say that A dominates p if

J J
dMoNz=D o Vi<k
=1 =1

We note p <.
Examples 1.2.2. 1. We have (3,3) < (4,2).

2. Consider A = (3,3) = (3,3,0) and u = (4,1,1). Then X\ 4 p and
p 4 A. Hence, < doesn’t form a total order.

Definition 1.2.3 (Total dominance). We denote by < the lexicographical
order. In other words, let A = (A1,..., Ag), 0 = (p1,-.., k) F n. We note
p <\ if either

1. A= p,
2. pj < Aj, where j is the first index where A and p differ.
Lemma 1.2.4. Let \,uFn. Then
pLX = p<A

Proof. Assume that \ # u, and let j be the first index where A and p differ.
Then :

J J
pAA = > <> N
=1 =1
- ,ujS)\j.
O

Lemma 1.2.5 (Dominance lemma for partition). Let \,u = n and T, S
be tableaux of shape A and p. If the numbers (elements) in each row of S
appear in different columns in T, then p < \.
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Proof. Lift’em up ! For instance, consider, A\ = (4,2), p = (3,3), and
tableaux

1[5]6]3] 416]2
T=12]4 and S =L1513]

The first line of S is (4,6,2). The 6 is already in the first line of 7. As
(4,6,2) lies in different comumns (by hypothesis), we can “lift” the 2 and
the 4 up to the first line of T :

2[4]6]3] 416]2
T/:15 S:15

)

Now, each number of the first line of S is in the first line of T'. Hence, if we
sum the numbers, we’ll get a greater or equal result in 7”.

2[4]6]3] ¥ =15 416]2] ¥ =12
7 — 115 g —[1]5[3

)

This shows that the first line of 7" is longer (or of the same length) than the
first line in S, and hence A1 > p1. We continue by lifting up the numbers in
the second line of S to the first two lines of 7", which again is possible by
hypothesis, we sum up, and get A\; + Ao > p1 + po. We would continue on
with larger tableaux, but the result will always be that pu < \. O
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Chapter 2

Tabloids and permutations
modules

2.1 Definitions

Let A F n. Denote by Tab()) the set of all tableaux of shape A. We then
have an obvious action

S, x Tab(A) — Tab(\)

which permutes the numbers in the tableaux. For example

4]6]2] [4]1]2
(136).1[5]3] _ B]5]6]

Let T be a tableau of shape A - n. We define

e R(T) to be the subgroup of &,, that consists of permutations that
stabilize the rows of T,

e C(T) to be the subgroup of &, that consists of permutations that
stabilize the columns of T

Lemma 2.1.1. Let T be a tableau of shape A+ n, and let m € &,,. Then
1. R(zT) = nR(T)r !,
2. C(rT) =7C(T)r L.

Proof. Let m € &,,. We can write it as a product of transposition. So we
just have to check the lemma for transposition, and it is then very easy. [

We define an equivalence relation on Tab(\) by

T ~T <= 3r € R(T) such that 7T =T".

)



Equivalence classes are calles tabloid of shape A. The equivalence class of T’
is denoted by {7'}. For instance

1[5]6]3] 1563 [1356]

We have an action of &,, on the set of tabloid Tab(\)/ ~ :

S, x Tab(A)/ ~ — Tab(\)/ ~
(m,AT}) — =T}
It is well defined. Indeed, let T,7" € Tab(A) be such that {T'} = {T"}.

Then by definition, there exists ¢ € R(T) such that ¢T = T’. We have that
p=mont € R(xT), as R(nT) = nR(t)m~!. Then

porT = o nT
=7ooTl
=T,
and so {71} = {nT"}.

Definition 2.1.2 (Permutation module). Let A - n. Define the permutation
module M?* corresponding to the partition A by

M* = C[Tab(\)/ ~].
Definition 2.1.3 (Cyclic G-module). Let G be a group, and V be a G-
module. It is said cyclic as a G-module if it is a cyclic module over the ring
CG. In other words, V = C{gv | g € G} for a v € V. Remark that then
T = 0;Migiv, VreV.
Proposition 2.1.4. The permutation module M* is cyclic, and
M = C[6,/6,].

Proof. Remark that Tab()\)/ ~ is a transitive G,-set. It is then clear that
M? is cyclic. Take any {T'} € Tab(\)/ ~. Then Stabg, ({T}) = &) (recall
the definition of the Young subgroup), and Orb({T'}) = Tab(\)/ ~, since,
again, the action is transitive. We have Orb({T'}) = &,,/&, as sets, and so
M?* = C[Tab()\)/ ~] by definition
= COrb({T})
= C[6,/6,].

Corollary 2.1.5. If A = (\1,...,\;), then

dim M* = I

Representation of the Symmetric Groups
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2.2 Character of M*

We now try to compute the character of M. Let 7 € &,,. Tt is clear that

xars (1) = g{T} | {nT} = {T}}.

That’s not convenient... Consiter A to be of length n (just add 0’s). Take
m € &,. The aim of what’s folloging is still to compute the number of fixed
tabloids by the action of 7. Let {T'} be such a tabloid, and (z1 --- x4) be a
g-cycle of w. Then all the numbers x; lies in the same row of T. Hence, we
can “arrange” those cycles among rows of T". If m has m, cycles of length g,
and if r, ; is the number of g-cycle at row p then we have

|
mq.

T !
i=1Tiq

ways to permute those cycles among the rows of the tabloid. Therefore,

XMA ZH

where X = {(rp.q)pq | Doreq Tig = mq and > 1" | 755 = Ap} describes all the
way of arranging the cycles of m among the rows of T. Remark that

1= 1Tzq

n
[Txi+ -+ xgyme = Z H | e XX X
=1

=1 TU]

where Y = {(rpqg)pq | Doreq Tig = Mq}. So X (mw) is the coefficient of
X{‘1 .-~ XM in the above polynomial !

Example 2.2.1. Take A = (2,2),u = (2,1,1) F 4. The partition p deter-
mines the following polynomial :

(X2 + X2+ X2+ XH)(X1 + Xo+ X3+ Xy)2,

in which the monomial X?X2 has coefficient 2. So x (1) = 2 (for this
notation, recall that each partition of n completely determine a conjugacy
class of &,,).

Representation of the Symmetric Groups
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Chapter 3

Polytabloids and Specht
modules

3.1 Definition

Take a subset H C &,,, and define

(IH:ZO'ECGn,

oc€EH
by = Z sgn(o)o = Z sgn(o)o € CG,,.
oeH o€C(T)

Let T be a tableau, and consider C(7"). Define

kr = bC’(T) € CG,,
er = kT{T} S M/\.

Example 3.1.1. Take

411]2]

We have that

C(T) = G343 X 6151 X Gpay,
ke = 1— (34) — (15) + (34)(15),

124] [1 23] [245] [235]
35] _[45] 13] . [14]

er =
Lemma 3.1.2. If 1 € &, take any tableau T of shape A+ mn. Then
1. kxr = 7TkT7T_1,

2. er7 = mer.



Proof. 1. We have :

krr = Z sgn(o)o

oeC(nT)

= Z sgn(o)o

cenC(T)m—1

= Z sgn(o)ror !

oeC(T)

= 7T]<3T7T_1.

2. We have :

ErxT — kTrT{ﬂ'T}
= nkpn HxT}

= Ter.
]

Definition 3.1.3 (Polytabloid, Specht module). We call er a polytabloid.
We note S* = (er | T € Tab()\)) < M* the Specht module corresponding to
A

Lemma 3.1.4. The submodule S* is cyclic.
Proof. Trivial, since e, = werp. O

Example 3.1.5. Take A = (1,...,1) = (1") F n. Then all tabloids have
form

There is n! of them, so dim M* = n!.

3.2 Irreducibility of S*

Define an inner product on M?* by

1 if {T} = {T"}

/
0 otherwise, VI, T" € Tab(}),

() = {

which we extend by linearity.

Lemma 3.2.1. The inner product (—, —) is Sy, -invariant.
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Proof. Trivial. O
Lemma 3.2.2 (The sign lemma). Let H < &,

1. if m € H, then wby = bym = sgn(m)by,
if u,v € M, then (bgu,v) = (u,bgv),

if (ij) € H, then by = k(id —(i 7)), for some k € C&,,

e e

if (ij) € H and if i and j are in the same row of a tableau T € Tab(\),
then by{T} = 0.

Proof. 1. We have

oy =7 Z sgn(o)o

ceH

= Z sgn(o)mwo

= Z sgn(7) sgn(wo)wo since sgn(m)? =1
ocH

= sgn(m)by.
We do similarly to show that bym = sgn(m)by.

2. If u,v € M?, then

3. If (1j) € H, then K = {id, (i j)} < H, and there exists a set of

representative my,..., . € H such that
T
H= ]_[ K.
k=1
Hence :

by = Z sgn(o)o

oceH

= Z sgn () my (id — (i 7))

k=1

Representation of the Symmetric Groups
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4. We have

bp{T} = r(id = (i )){T}
= w({T} = {5)T})
=0.

Lemma 3.2.3. Take \,utn, T € Tab(\) and T" € Tab(u), then
1. if kp{T'} # 0, then p <\,
2. if kp{T"} #0 and X\ = u, then kr{T'} = ter.

Proof. 1. Pick ¢ and j in the same row of 7”. Then they cannot be in the
same column of 7', and hence, by dominance lemma, p <T .

2. We have that T and T” have the same shape. There exists 7 € &,
such that 7" = 7T. Since kr{T'} # 0, we have that 7 € C(T). Hence

kr{T'} = kr{rT}
= Z sgn(o)o{nT}

ceC(T)

= sgn(m)er.
O

Corollary 3.2.4. Ifu € M*, and T € Tab()), then kru = cer, for ac € C.

Proof. Since u € M?, we can write u = 5. ¢;{T;}, and so
K]

kTU = Z C; kT {Tz}
( =0 or *ep

= cer.
]

Theorem 3.2.5 (Submodule theorem). If U < M?* is a submodule, then
either S* < U or U < (S*)*.

Proof. If u € U and T € Tab(\), then k7u = cer € U. Therefore, if Ju € U
and 37 € Tab(A) such that kru # 0, then ¢ # 0. So we have that cer € U,
and so er € U. As S is generated by er, VT' € Tab()\), we have S* < U.

Representation of the Symmetric Groups
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Assume now that Yu € U, VI' € Tab(\), kru = 0. Then we have that
(u,er) =0,Vu € U, VT' € Tab()). Indeed,
(u,er) = (u, kr{T})
= (kru, {T})
=0.

So U < (8Y)*. O
Corollary 3.2.6. The Specht-modules S* are irreducible.

But are they isomorphic ?
Lemma 3.2.7. Let 6 : S* — M*, for A\, u F n.

1. If 0 # 0, then p <A,

2. If X\=p, then 6 = cidgx, for a c € C.

Proof. 1. We know that Jer € M)‘A such that 6(er) # 0. Since M =
S*@(S*)*, we can extend @ into # by agreeing that 0l(s»y1 = 0. Hence

O(er) = 0(kr{T})

= krO({T})
e M*.

So 0 # 0({T}) = 3, ¢;{T;}, where T; € Tab(u). So there exist at least
one T; such that kp{T;} # 0. So p < A.

2. As above, we extend 0 into § : M — M*. We have f(er) =
> ci{Ti}, where T; € Tab(\). Then, 0(kr{T}) = kr6({T}) = cer.
Then

O(err) = O(mer)
= 0(rkr{T})
= mkr6({T})
= mcer

= CcerT.
So O(u) = cu, Vu € S*. Since the result holds for all er (which are the

generators of S™).
U

Lemma 3.2.8. The set {S* | A= n} is a full set of irreducible modules of
G-

Representation of the Symmetric Groups
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Proof. We just have to prove that they are pairwise non isomorphic. Assume
¢ : SA =5 S is a non zero isomorphism. We extend it into (5 M —
St — M#. So ngS # 0, and g < A. On the other hand, ﬁ s MHF — M s
non zero either, and so A < p. Finally, A = p, and S* = S*. O

Corollary 3.2.9. Let A - n. Consider the following decomposition into

irreducible modules :
M = P
pukn

Then my , = 0 if p X, Moreover, my = 1.

Proof. Recall that

My = (XSr, Xar)
= dim Hom(S*, M™).

If my, > 0, then there exists a non zero morphism 6 : S# — M?, which
indices a non zero morphism 6 : M* —s M?, and so A\ < u. Moreover,

ma = (5%, M*)
= dim Hom(S*, M)
= 1’

by a previous result. O

3.3 Basis of S*

We call a tableau T € Tab(\) standard if the entries of T" are sorted increas-
ingly in all its rows and all its columns.

Examples 3.3.1. Consider A\ = (4,2) - 6, then

1[5[6]3]
204

is not standard, whereas

2]4]6

1]
315

is.

Definitions 3.3.2 (From exercise set 5). 1. A composition of an integer
n is a sequence of non-negative integers A = (A1,...,Ag), such that
Zle Ai = n. The integers \; are the parts of the composition.

Representation of the Symmetric Groups
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2. Let A and pu be two composition of n. We say that A dominates u,
which is denoted by p < A, if

J J
<> N Vi<h
i=1 i=1

3. Let {T'} be a tabloid of shape A - n. For each i < n, we define the
composition A if i by

)\; = the number of entries that are <4 in the j-th row of {T}.

The sequence of compositions (A!,... A" is called the composition
sequence of {T'}.

4. Let {T} and {T"} be two tabloids of shape A\ I n, with corresponding

composition sequences (A!,...,A\") and (u',...,u") respectively. We
say that {T'} dominates {T'}, which is denoted by {T"} < {T}, if
/f < )\i, Vi <n.

Reminder 3.3.3. Let (A, <) be a poset.

1. An element a € A is a maximum if b < a, Vb € A.

2. An element a € A is mazimal if a <b = a =05, Vb € A.

Lemma 3.3.4 (Dominance lemma for tabloids). LetA - n, and T' € Tab(\).
If k <1 <mn, and k appears in a lower row (that is, drawn lower) than [ in
[T], then

{T} < (R D{T}.

Proof. Exercise 4 from sheet 5. O

Corollary 3.3.5. If T is a standard tableau, and if {S} appears in er, then
{S} <{T}.

Lemma 3.3.6. Let v1,...,v, € M*. Suppose that each v; admit {T*} as
maximum tabloid in their decomposition, and that those {T"}s are distincts.
Then vy, ...,vy are linearly independent.

Proof. Without loss of generality, we can assume that {7'} is maximal
among all tabloids. Then {T'} cannot appear in v;, Vi # 1, or it would
otherwise be maximum in v;, and so {T'} = {T?}. Suppose that v; =
d{T"} + 32, di{T;}. Let c1, ..., ¢ € C. Then

m m
ZCZ‘UZ' =0 = ZCl{TZ} =0
i=1 =1
m
— cld{Tl}—l—chdj{T}}—i-chi =0
i =2

— 61:0,

Representation of the Symmetric Groups
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as {71} only appears once, with coefficient ¢1d, and d # 0. So Y_1*, dic;{T"} =
0, and we conclude by induction. O

Proposition 3.3.7. The set {er | T standard of shape \} C S* is linearly
independent.

Proof. Remark that a standard tabloid {7'} is maximum among the terms
of ep. We can conclude using the previous lemma. O

We now show that the standard polytabloids generate S*, that is, gen-
erate any other epr, where T isn’t standard. We can always assume that
the columns of 1" are increasing from top to bottom, as this property is al-
ways true up to column stabilizer : if 7' € Tab(\) doesn’t have the required
property, then 3o € C(T') such that ¢T does. Moreover,

€cT = O€T
=0 Z sgn(T){7T}
TeC(T)
= sgn(o)er.

So if T' isn’t standard, we can assume that the order problems occur in the
rows of T.

Definition 3.3.8 (Garnir element). Let A and B be two disjoint finite
sets. Consider the permutations groups 6 4, ©p, and & 4,5. We have that
G4 x6p <6aup. Let m,...,m, be a family of representatives of the left
cosets of G4 x Gp :

T

Saup = [ (64 x &p),
i=1

where W stands for the disjoint union, and where m; = id. We define a garnir
element of (A, B) to be

.
gas =Y _sgn(m)m € CSaup.
i=1

This element depends on the choice of representatives, and is therefore not
unique !

The group & qup acts obviously on the set of all possible ordered pairs
(A', B') satistying |A'| = |A|, |B’| = |B|, and A’W B’ = AW B. For every
such pair (A4, B), assume that 74/ g/ is such that

W(A’,B’)(Aa B) = (A/7 B/)

The (4 pry form a family of representatives of the cosets of &4 X &p.

Representation of the Symmetric Groups
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Definition 3.3.9 (Garnir element of a tableau). Let A - n, T" € Tab(\),
j <n, A a set of elements of the jth column of T, and B a set of elements
in the j + 1th column of T. Then a garnir element of T is a garnir element
of the pair (A4, B), choosing the representatives m such that the elements of
AW B are sorted in increasing order in 77

Example 3.3.10. Consider (3,2,1) - 6, and

2[4]
3

l@cn»a

T —
The we can define A = {5,6} and B = {2,3} :

2]4]

|cncn»—l
w

The representatives satisfying the above condition are {id, (235),(2365)}.
Indeed :

1]3]4]
2[5
(235)T =161
1[3]4]
2(6
(2365)T = L2

The corresponding garnir element is then
gap =1id+(235) — (236 5).

Proposition 3.3.11. If T is a tableau, choose A and B as before. If |AW B|
is greater than the number of elements in the jth column, then ga per = 0.

Proof. We first show that bg , ,er = 0. Let 0 € C(T). Then there are
a,b € AW B such that a and b appear in the same row of ¢7. Then,
(ab) € Gaup, and so by previous lemma, bg,,,0{T} = 0, which leads to
our assertion. We know that

r

Sawp = [H (G4 x &p),
i=1

and so bg ,,; = 94,Bbs ,x& - Using our assertion, we have that ga gbs , xsze1T =
0. However, S4 x & < C(T), and so
0 = ga,Bbs s xszeT
= g4,8|/64 X &pler.

Representation of the Symmetric Groups
17



Definition 3.3.12. Let T' € Tab(\). We define the column tabloid to be
the orbit of 7' under the action of C(T"). De denote this set by [T]. We
define dominance for such tabloids in a similar fashion that for row tabloids.

Example 3.3.13. Let (2,1) - 3, and

1[3]
T — 2]

7] = .

Proposition 3.3.14. The set {er | T € Tab(\), T standard of shape A}
generates S*.

Proof. We only show that {er | T' € Tab()), T standard of shape \} gen-
erates {ep | T € Tab()), T of shape A\}. If T is a tableau such that [T7] is
maximal, then T" shares its tabloid [T] with a standard tableaux, and so ep
is generated by the standard polytabloids. If T" doesn’t have such a property,
assume by induction hypothesis that any tableau S such that [T <[S] does.
We can assume without loss of generality that 7" has sorted comumns (from
top to bottom). As [T] isn’t standard, the violations of standardness occur
in the rows. Pick the first one (that is the highest row in the drawing that
present such a violation). Here is a little drawing of T :

Then

ai | by
a; > b

by
ap

Define A = {a;,...,a,}, and B = {b;,...,b,}. Since |A W B| > p, we know
by a previous proposition that g4 ger = 0. Then :

T
ga.per = er + Z sgn(m;)mier =0 remember : w1 = id
=2
T T
= er=— ngn(m)meT =— ngn(m)emT.
=2 i=2
Since [T] < [m;T], Vi > 2, the result follows by decreasing induction. O
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Corollary 3.3.15. 1. The set{er | T € Tab(\), T standard of shape \}
is a basis of S™.

2. If fN = dim S* is the number of standard tableauz of shape X, then

nl=> " (f)2

AFn

3.4 Basis of Homcg, (S*, M*)

Definitions 3.4.1 (From exercise sheet 6). 1. A generalized Young tableau
of shape A F n is a Young diagram of shape A filled from numbers from
1 to n, allowing repetitions.

2. The type or content of a generalized Young tableau 7' is the composi-
tion p, where p; is the number of ¢ entry in 7T'.

3. Define
T =1{T | T has shape X and content s}.

4. A generalized tableau is said semistandard if its rows are weakly in-
creasing, and its columns strictly increasing (from top to bottom).

5. Define
’7’)\0’# ={T €T,, |T is semistandard}.

6. Define the Kostka number to be

Example 3.4.2. This

is a nonsemistandard generalized tableau of shape (2, 1) and content (0,2, 1).
This

1[1]
3

is a nonsemistandard tableau of shape (2, 1) and content (2,0, 1).

Let t € Ty, Denote by t(i) the i-th entry of ¢ :

t(l)t(2) Hit(/\l)
t()\1_|_1) 1 H—t()\1_|_)\2)

E(2 i)
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From now on, denote Tj be the tabeau such that Ty(i) = 4, i.e. it is of the
following form :

)\1+1 I NN - )\1+)\2

Y

Let S be a tabloid of shape p. We define ¢t € T, ,, from {S} by :
t(i) = the index of the row in which ¢ appears in {S}.

Example 3.4.3. Choose A = (3,2) and p = (2,2,1). We have

4
3

2]

YD |

2
3

—

= { =

{5} =

This construction defines a bijection from tabloids of shape p to Ty,
which we extend into an isomorphism of vector space

O : M* — CTh .

We want this to be a C&,,-isomorphism, and so we check that it is compatible
with the action of &,,. We have an action
S, x TA,M — 7;\,/1
(m,t) — mt,

where 7t(i) = t(71(i)). Let {S} € M*. We have

O(m{S})(i) = the index of the row in which ¢ appears in 7{S}
= the index of the row in which 7~ (i) appears in {S}
=O({SH(r~' (1))
=710({S}).
So © is a CS,,-isomorphism.
We now take interest in Homcg,, (M*, M*). Let t € T, We can define

the tabloids {t} and [t] in a similar fashion as we did with tableaux. Define
a homomorphism

0r: M* — CTy,, = M*
{To}— > S

Se{t}
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This defines ©; completely since M* can be generated only by T as [o,]-
module. Remark that this construction makes ©; into a C&,,-homomorphism.
Denote ©; = O¢|gr. We have

Oler,) = O1(kr, {Iv})
= k1,0:({To})

=kp » S

Se{t}

Proposition 3.4.4. Let T be our fized tableau of shape X, and taket € T .
Then kr,t =0 iff t has two equal elements in the same column.

Proof. = If kp,t =0, then

t+ Z sgn(m)mt = 0.

7eC(To)\{id}

As the generalized tableaux form a basis, this zero linear combina-
tion forces the term —t to appear in »_ o)\ fiay S80(7)7wt. So Jo €
C(Tp) \ {id} such that sgn(c) = —1, and such that ot =t. As o is a
column stabilizer, this forces t to have at least two equal elements in
a same column.

<= Suppose t(i) = t(j), with the i-th and j-th entries in the same column.
We have (i j) € C( 0)- By the sign lemma, 3k € C&,, such that
kr, = k(id =(i7)). S

byt = kt — k(i j)t
= kt — kt
=0.

O]

Recall that £y, =0 = p < X. We define the dominance order on
the generalized tabloids and on the generalized column tabloids in the same
fashion as we did with tabloids.

Lemma 3.4.5 (Dominance lemma for generalized column tabloids). Ift €
Ty k and 1 appears in the i-th and j-th row respectively, i < j, k <, then

1] < [(k 1)1

Let V' be a C-vector space, and B = {b1,...,by} one of its basis. Sup-
pose that ~ is an equivalence relation on V', and that < is a partial order
on V/ ~.

Lemma 3.4.6. Let vy,...,v, €V, and assume that
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1. each v; has a maximal component in b;,
2. [b]~ < [bi]~, for all b in which v; has a nonzero component.
Then v1,...,v, are linearly independent.

Proof. Exercise 7.2. 0

Lemma 3.4.7. Let V and W be two C-vector spaces. If ©1,...,0, €
Homc(V, W), and if there exists v € V such that ©1(v),...,0,(v) are
linearly independent in W. Then O1,...,0, are linearly independent in
Homc (V, W).

Proof. Trivial. Indeed if Y ;" | a;0; = 0 then >, a;6;(v) = 0, therefore
a; = 0 Vi. ]

Proposition 3.4.8. The set {©; | t € T)\U#} is linearly independent in
Homgg,, (S*, M*).

Proof. Suppose that 738# = {t1,...,tm}. Inthelight of the previous lemmas,

we only prove that Oy, (er,),..., Oy, (er,) are linearly independent in M*.
We have

éti(eTo) = C:)ti(kTO{TO})
= kToeti({TO})

=k Y S

Se{ti}
Since t; is semistandard, we have that [S] < [t;], VS € {t;}, S # t;, by
dominance lemma. Hence [¢;] is the maximum term of k7,0, ({Tp}) with a

nonzero coefficient. Moreover, the ¢;s are distinct. So by previous lemma,
the Oy, (er;) are linearly independent. O

Lemma 3.4.9. Assume that © € Homcg, (S, M*) is such that
O(er,) = Z cit.
Then
1. If m € C(Tp) and ty = wta, then ¢, = sgn(m)cy, .
2. If t has a repeat in a column, then c¢; = 0.

3. If © #£ 0, then there is a semistandard tableau t such that ¢y # 0.
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Proof. 1. We have

7O (er,) = O(mer,)
= O(sgn(m)er,)
= sgn(m)B(er,).

The result follows.

. Assume that ¢ has a repeat un a column, say at entries ¢ and j. We
have (i j)t =t, and so ¢; = —¢; = 0.

. Assume that © # 0. There is a ¢;, # 0, and we can take it to be
maximal for this property. By previous lemma, we can take to to have
increasing columns, and since to doesn’t have any repeats, we can take
it to have strictly increasing columns. Any violation is semistandard-
ness occurs in the rows.

ay | by
SN Ry iy —
— A+ AA+—

a; > b;
— AL AL

A

bq

LA
CLp

Take A = {a;,...,ap}, and B = {b1,...,b;}. Consider a garnir ele-
ment g4 p with id beeing one of its term. We have g4 ger, = 0, and
SO

g4 Y _ ot = gapO(en)

= G(QA,BCTO)
= 0.

We have that ga pta = to + > ---. There is a generalized tableau S
and a permutation 7 appearing in g4 p such that 75 = t3, and so
[to] < [S], a contradiction with the maximality of ts.

O]

Proposition 3.4.10. The set {6, |t € 7'/\%} spans Homgg, (S*, M*).
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Proof. Let © € Homcg, (S, M*), such that

O(er,) = Z cet.

Define Lg = {S € 7')\07“ | [S] < [t] for some term ¢ of O(er,)}. By induction
on |Le| :

o If |Lg| =0, then © = 0.

o If |[Lg| > 0, then © # 0, and we can take t to be the semistandard
tableau appearing in O(er,) with [t2] maximal. Take

@2 =0 - Ct2ét2.

Remark that Lg, C Lg. Moreover, ty € Lo \ Lo, (exercise), and so
|Lo,| < |Lel|. The result follows by induction.

O
Corollary 3.4.11. The set {6, |t € T)\OH} is a basis of Homcg, (S, M*).

Corollary 3.4.12 (Young’s rule). We have

M* = @P(SH) .
An

Proof. 1f my , is the coefficient of SN in M*, then

my ,, = dim Homes,, (S*, M")
= T2l

= Kxu
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Chapter 4

Symmetric functions

4.1 Definitions

Let’s start with Z[X1,...,X,]. We have an obvious action

Gp X Z[X1,. .., Xp] — Z[X1, ..., Xy
(Ua f(Xla s 7XTL)) — f(XO'(].)7 s 7Xa(n))'
We call a polynomial symmetric if o f(X1,...,X,) = f(X1,...,Xp), Vo €

S, and denote by A,, the subring of Z[X}, ..., X,,] of symmetric polynomi-
als. We have a grading

ZIX1,..., Xul = PZX1, ..., Xk,
k>0

where Z[X1, ..., Xy] is the subgroup of homogeneous polynomials of degree
k. Wa obtain an induced grading

A =EP A%,

k>0

where AF is the subgroup of Z[X7, . .., X,], of homogeneous symmetric poly-
nomials of degree k. Let « = (a1, ...,a;,). Denote X = X1 ... X% Take
A a partition (not necessarily of n) that has length I[(A\) < n. Define

m/\(Xla-"7Xn): Z XUA?
c€G,|Stab(N)

where ¢ runs through &,, such that o\ doesn’t repeat. It is clear that,

mx(X1,...,X,) are symmetric polynomials. Moreover, A # p implies my (X1, ...

mu (X1, ..., Xn).
Take f(X1,...,X,) anonzero symmetric polynomial. Then X appears
in f(X1,...,X,), for some a. Since f(Xi,...,X,) is symmetric, X7 also

25
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appears, Vo € G,,. Take 7 € G,, such that Ta = X is a partition. We have
that my(Xy,...,X,) appears in f(Xy,...,X,), and so

(mx(X1,...,Xn) | L(A) <n, A partition) = A,,.

The later set is moreover a Z-basis. We then have that {my(X1,...,X,) |
I(\) <n, Ak} is a basis of A¥. If k < n, we can drop the condition that
I(A) <n.

Take n < m, and consider

pZ[X1,. .., Xm] — Z[X1, ..., X,

Xi— { 0 otherwise.

From that, we build
Pmn A — Ay
ma( X1, ..., X)) — ma(Xq, ..., Xn),
where [(\) < n, and
P Ay — AR

ma( X1, ..., X)) — ma(Xq, ..., Xn),

where again, [(\) < n. If £ < n < m, then the later map is a bijection.
Let A* be the set of sequences of the form (f;);en, where

1. f. €Ak
2. fim(X1, .., X0, 0,.00) = fu(X1, ..., Xp), Vm > n.
Obviously, AF is a Z-module. Assume that k < n, and define
Pt AR — Aﬁ
(fi)ien — fn.

Remark that this a Z-isomorphism (small exercise). So for every my (X1, ..., X,),
there exists my € A¥ such that

p”(m)\) = mA(Xl, c. ,Xn).

Here, my and my(Xy,...,X,) are two distinct things that live on different
worlds !!! Therefore, A* is free with basis {my | A F n}.

Example 4.1.1. Take A = (4,1) - 5. Then
e mg =0,
e m1 =0,
o my = X1 Xo+ X1 X3,
o my = X{Xo+ X1X5 + X1 X3+ X1 X5 + X3 X5 + Xo X3,

e and so on...
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4.2 Elementary symmetric functions

Define

60:1,

Cr = Z leer

1 <o <lp

Remark that e, = m;-), and therefore is symmetric., and so e, € A. If A is

a partition, say A = (A1,...,\p), then define ey = ey, ---ey,.

P

Proposition 4.2.1. 1. The set {ex | A\ F k} is a Z-basis of A*.

2. The elements e, are algebraically independent, and

A= Z[el, .. .],
A, =Zeq, ... ep).

Proof. 1. Let X be the transposed partition of A (i.e. the partition cor-

responding to the transposed Young diagram [A]!). With respect to
the lexicographical order, the following monomial is the highest that
appears in e :
A A
(Xl"‘Xil)"'(Xl"'XS\q :Xll'”pr-

Therefore, m)(X1,...,X,) appears in e5 with coefficient 1. So {e) |
A F k} generates {my(X1,...,X,) | A F k} and so A*¥. More-
over, they are algebraically independent, again by the fact that each
mx(X1,...,X,) appears with coefficient one in and only in e5.

2. Immediate from the first point.

4.3 Complete symmetric functions

Definition 4.3.1. Let L be a field, S un subset de L and K a subfield
of L, S is algebraically free over K (or equivalently its elements are al-
gebraically independant over K) if, for all finite sequence of distinct ele-
ments of S (s1,...,$,) and all non zero polynomial P(X;,...,X,) € K[X],

P(Sl,..

.y 8n) # 0.

Define

ho=1

hr: Z Xi1"‘Xir:Zm>\-

11 < <ip Abr

Those are obviously symmetric functions. If A is a partition, say A =

(M, ...

,)\p), then define hy = hy, - - - hy

p*
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Proposition 4.3.2. 1. The set {hy | A\ k} is a Z-basis of A*.
2.
3. The elements h, are linearly independent, and

A=2Zh,.. ],
An = Zha,. .. ).

Proof. 1. We already know that A = Z[ey, ...]. Define
w:A—A
e; — hy,

which we extend by linearity. We prove that w is a bijection by showing
that w? = idy. Consider the elements of A[[t]] :

E(t)=> et

reN

= [0+ xit),

r>1

the later equality is a small combinatorial exercise, and

H(t)=> hyt"

reN

Remark that E(t)H(—t) = 1, and so t" has coefficient 0 in E(t)H(—t) =
1. So

n

> (=1)en_rhy = 0.

r=0

We prove that w(h,) = e, by induction on r. If r = 0, it is clear. If
r =n + 1, we know that

w (Z(—l)’”en_rhr> => (1) iy (hr)

r=0 r=0
=0.
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So

= (=1)"hpt1—rw(hy) + (_1)n+1h0w(hn+1)v
r=0

and it follows from above that w(hp+1) = €pyi1.

2. Immediate from the first point.

O
4.4 Schur functions
Definition 4.4.1 (From exercise sheet 8).
1. Define the rth power sum by
pr = Z X; e A"
i
Define py =[], pa,-
2. Define
2\ = Hmz'lml, €N
i>1
where m; = #{\; | \; = i}.
Consider Z[ X1, ..., X,], and take a = (ay,...,a,). Define
g = Z sgn(o) X7 € AZe,
0'6671
where oa = (ag(1),---,05(n))- It is an antisymetric polynomial. Observe

that if a; = a;j for ¢ # j, then o, = 0. Hence, we can restrict to the cases
where a1 > -+ > a, > 0. Take a = A + 9, where X is a partition of length
at most n. We have 6 = (n —1,n—2,...,1,0). Hence clearly

Adn—j
ag = det(X? "’

= det(X,L-aj)i’j.

)i.j
The polynomial a5 is divided by X; — X; in Z[Xq, ..., X,,]. Hence

HXZ —Xj ‘Oé)\Jr(g.
1<j
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Moreover,

H X; — Xj = det(X]"); Vandermonde det.
1<j

= QO5.

So aglayss. Define the Schur polynomial

Ajn—j
arps _ det(X;7 )

Sv(Xq,...,X,) = ,
)\( 1 ) ) as det(XZ’L_J%J

€A,

This is a symmetric polynomial, as quotient of two antisymmetric polyno-
mials. If [(A) < n, and S\(X1,...,Xp,0) = S\(X1,...,X,), then define the
Schur function as

Sy = (0, Sx(X1), Sx (X1, Xa), ...).

Proposition 4.4.2. The set {S\(X1,...,Xn) | I(N) < n} is a Z-basis of
A,

Proof. Take A, to be the submodule of the antisymmetric polynomials. If
f is antisymmetric, we can write f = agsf’, where f’ is symmetric. Define

d: A, — A,
fr—asf.

This is a Z-isomorphism. We have that {a)is5 | I(A) < n} is a Z-basis of
A,,. Moreover,

D(S)) = asSy
= Q)45
So {Sx(X1,...,Xn) | L(N) < n} is also a Z-basis of A,,. O

Corollary 4.4.3. 1. The Schur functions are a Z-basis of A.
2. The set {Sy | I(\) = k} is a Z-basis of AF.
Recall that Z[ey,...] = Z[hy,...]. Take Sy € Zle1,...] = Z[ho, . . .].

Proposition 4.4.4. Assume that [(A\) < n, and [(\) # m.
1. (Jacobi-Trudi, 1841) We have

Sx = det(hx;—itj)i;-
2. (Giambelli, 1903) We have

S)\ = det(e;\i_i_s_j)i’j.
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Proof. 1. For 1 < k < n, denote by eF the elementary r-symmetric poly-
nomial on {X1,..., X, ..., Xp}. Let a = (a1,...,an),

M= ((1)en)
ik
Aa = (Xj('li)i,jﬂ
Ha = (hai—n—s—j)i,ja
n—1
ER(t) = Z et = il + Xit.
r=0
We know that )
H(tE(t) = .
ME® =

Consider the coefficient of % :

n

> (1) ha,-nyjen_; = Xp.
j=1

So H,M = A,, which shows that

det(H,) det(M) = det(A4,) .
~—— ~——

=1 =Qq

Therefore, det(M) = a,. Take now a = A + §. We obtain
det(Hyys)as = axys,

and so det(H)yy5) = Sh.

2. Exercise.

Example 4.4.5. Take A = (4,1). Then

ha  hs

he hyl~ hahi — hs.

Sy =

Lemma 4.4.6. We have

det( ! )” _<H<3Xr‘lj(i)_(§;jy_yj>

1—X,Y;

1,j=1

Lemma 4.4.7. We have

[Ty =X 5080,
ilj X\

i?j
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Consider the previous automorphism w : A — A. We have

w(Sx) = w(det(hx,—it)i;)
= det(e)\i,iﬂ-)i,j

Define

which we extend by linearity.
Theorem 4.4.8.
1. <S/\,Su> = 5)\7M‘

2. <p/\’pu> = ZA(S‘)\,M'
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Chapter 5

Induced modules

Assume that G is a group, and that H < G is a subgroup. If V is a
KG-module, then V|g is the restricted KH. Conversely, if W is a KH-
module, can we construct a KG-module out of it ? Let {s1,...,s,} be the
representatives of the left cosets G/H. Write

G = f[SlH
i=1

Each element of G is of the form g = s;h, for some 1 < ¢ <r,and h € H.
Consider V = W®". We have that G acts on V by :

GxV —V

(g, (wi,...,wp)) —> (hg}o_g—l(l)wo_g—l(l), e hg’o_g—l(r)wa,g—l(T)).

Denote by W& = Ind% (W) = V. We can embed W into V in the following
way :

W—V
w+— (w,0,...,0).
We have .
KG = PKs;H,
i=1
and

KG @y W = @ Ks;H @xg W
=1

T
= @ s @ W
) S——
=1 s @uw|lweW}
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So every element of KG @gpy W is of the form z = >"._; s; ® w;. Moreover

ZS’ ® w; = E(gsi) ® w;

i=1

= Z Sag (i) g, @ Wi
=1

=D 50,0) @ (hgw;)
=1

T
= Z S; X hgp_g—l(i)wo_g—l(i).
i=1
Hence, we have a KG-isomorphism

Ind% (W) — KG @gg W
(wi,...,wp) — Zsi ® w;j.

Examples 5.0.9.
1. Ind%(KH) = KG.
2. Ind%(K) = K[G/H].

3. M*=C[6,/6,] = Indgz(l)\), where 1) = C is the trivial representa-
tion of G,,.

Take
$: H — GLy(K)
ho— (®i;(h))ij=1,

which corresponds to the KH-module W with basis {w1,...,w,}. Denote
by ®¢ the matrix representation of Ind%(W). We now describe it with
respect to the basis {s; @ w;}; ;. We have

g(si @ wj) = (gsi) ® w;
= S0,(i) © Ng,oy (i) W)

= 50,(1) @ ) Puj(hg.i)wy
t=1

Dt j(hg,i) (S, (i) © W)

I
M:

-
Il

1

I
[ Mﬁ

n
Z 95@ )@ (hgi) (s @ we),
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where

if o4(i) =

if o4(i) #
1
1

5(sljlgsi)

if s, gsZGH

gsi € H.

Il
—

SO = O =

1fs

We have ®%(g) = <¢>’(sj_193i)>ij, where @’(sflgsi) = (5(3]-_19&)(1)(3]-_1931-).

Take now any function ¥ : H — C, and denote

¥:G—C
U(g) ifge H
QH{O itg¢ H.

Proposition 5.0.10. Let x© be the character of ®C. Then

T
=;x ) —|H|ny 9y)-

yeG

Proof. We have
x%(g) = tr@“(g)

—Ztrfb gsl
_ZX gsz

Then

> Xy lgy) = ZZ ;gsih)

yeG =1 heH
= Z ’H’X gsz
]

Theorem 5.0.11 (Froebenius reciprocity). Let W be a KH -module, and V'
be a KG-module. Then

X xv)a = (Ows Xvip) i
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Proof. We have :

<X%7 XV>G

1
|Gl

1
|G| H]

> X (9xv(g)

geG

> xwly ay)xv(9)

9,y€G

1 S
el > xwl9)xv(ygy™)
geG

|1H| S v (9)xr (@)

geG

’1H| S w9 (9)
geH

<XW7XV\H>H-
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Chapter 6

Character of the Specht
modules

Remark 6.0.12. Let p - n. We have
Pu =S =3 Gima.
A A

A= (A1,..., ), and g = (p1, ..., ftm), then xa(p) is the coefficient of
my = th . -X]i"“ is the following polynomial :

m

m
o+ =T =
i=1 i=1

=DPu;

So X (1) = &
Remark 6.0.13. We have

1

S = Z ;xﬁpm
L
1

hy = Z ;gﬁpu-
PR

Let R, be the free abelian group with basis {[S*}a-n. All the elements
of R, are uniquely written as

o= @]
A A

Take Ry = Z, and define

R =P Ry.

n>0
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We want this group to be a graded ring. Define

Rn X R, — Rpim
(V] [W]) — [Indg" s (V@ W)).

This is a well defined product. So R is a commutative graded ring (with

unit). Define

RxXR—Z
([97, 15"7) ¥ ([S7], [*]) = G-

If [V] = 30, na[S], and [W] = Y, m,[S?], then

However,

Define now

d:A—R
h)\'—>[M)\].

Theorem 6.0.14. The Z-morphism ® is
1. a homomorphism of rings,
2. an isomorphism,

3. an isometry,

4. such that ®(Sy) = [S*].

Proof. 1. Itis sufficient to show that ®(hy) = ®(hy, -+ - hy,) = P(hy,) -

We have
B(hy,) = [MN] = [1s, ).
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So

P(hy,) - (b(h)\k) = [16>\1] T [16)%]
= [Indg" 1s,]
= [M7.
2. From Young’s rule, we have that [M?*] = [S*] + 2o Kua[S*], and
so, {{M*]} form a basis of R. So ® is an isomorphism.

3. Define
v:R— AQ = Q RXR7, A
1 1
(M) — > ;f,)jpu =y Z X (1)Dp-
po H po H

Because f the evaluation on the basis {[M?*]},, we have that ¥ o ® is
the inclusion map A —— Ag, and si ¥ is an inverse of ®. Then,

(V] RV} = 37— (ar () (o pa)
oA A =20
=3 D)
e
= (V). W),

and so P is isometric, as ¥ is.

4. We know that hy = Sy + >, @Sy, and that [MA] =[S +
> uox Kua[SH]. But @(hy) = [M?], and so

©(S)) =[S+ Y ulS"].

P>
However,
L = (Sx, 5))
= (B(S), (5Y))
=1+) 7
P>
and so v, = 0.

Corollary 6.0.15. We have xgx(p) = x;,.
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Proof. We have

L oA
E —x,py =S
Z'M Mp,u A

i
=¥ ([57)
1
=3 —xsr(W)pu-
“
o
O
Corollary 6.0.16. We have
hy =S+ ZICM)\S#'
P>
Proof. We know that [M*] = [S*] + 32, Kua[S"]. Apply ¥ to get the
result. O

Take X\ a partition. Then we already know that
dim S* = #{standards tableaux of shape A}.

We also know that yg»(p) = :L';), where

pH(Xl, e ,Xk) = ZI'QS)\
A

Moreover, xg(id) = xgr((1")) = dim S*. Let [; = \; +k — 4. Then xl); is
the coefficient pf X' in
p,u(Xb Ce ,Xk) H(XZ — X])
i<j
(see exercise set 10). Recall that p, = py, -+ pu,, and so
p(l")(Xla s 7Xl<:) = pl(Xla s 7Xk)n
= (X1 4+ Xp)"

We now take interest in the other part :

1 X, - X]’:*l
[[xi-xp=1 + o
i<j 1 X .- Xffl
k— k—
X] Lo X} 1
N X, - Xy
1 1
= Z Sgn(a)XZ(I)f1 e X?(k)fl.
€Sy
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On the other hand, we have that

n! T T
(X1 4 Xp)" = Z 7r1!---rk!X11kak'

T1yesTk

So the coefficient of X! in p,(Xi,..., X}) [Tic;(Xi — Xj) is

n!
ngn("> (h—a(k)+ ) (s —o(1) + 1)!

|
—ngn e ost. lj—o(k—j+1)+1>0
HJ (= o(k—j+1)+1)!

k
T Z sen(o) [[ L -1 (i —o(k—j+1)+2)
7j=1

geSy

1 I le(ly — 1)
ool b ey e 1(lk: 1—1)
ERZTERRT N F
1 0L l1(11 -1)
k—1
" 1 I l.,% R
1 I l% l’f‘l
Il 1! H Vandermonde det.
1<J
So finally :

dim S* = 'H

1<j

6.1 The hook formula

We start by assigning coordinates to the boxes in a Young diagram. For
instance, if A = (3,3,2,1) - 9, then we have

(1,1)[(1,2)[(1,3)

(2,1)](2,2)[(2,3)

(3,1)((3,2)

(4,1)

(Al =
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The hook length if the (i, j)-th box is the number of boxes that appear right,
down, or on the box (i,7). For instance, in the previous diagram, the hook
length of (1,2) is h(1,2) =4 :

(1,2)

Theorem 6.1.1 (Hook formula). Let A = (A1,...,Ax) F n be a partition.
Then

|
dim S = i

Ly hGag)
Proof. By induction on k, the number of rows in [A].

e If £ =1, then A = (n), and we already know that

|
dim ™ =1 = E.
n!
o We know that
1<)
(n—Ap)! (n—XM+1)--n
= LUl IT -1 I IT -1
2<i<j<k 1<ji<k
(n—Ap)! l =1
= = "(n_Al—i_l)...n
HiZZ,jh(Z7]) 1<Jl_'[Sk Iy!

. n! ll — lj
[Liso, ; 1(i, ) <]1_[§k L
It remains to prove that the product of the hook lengths of the first

row is
I

(h=1g)-(h=l2)
Recall that I; = \; + k — i. We have that

- h(l,l):)\lJrk*l:ll,
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~ h(1,2) =1 — 1,
— h(l,)\k) =0 — X+ 1,
— h(1,\g +1) =11 — A\ — 1, provided that Ag_1 > Ag,

We conclude by this observation.

Example 6.1.2.

dim S@1) = 3t

L —
Ix1x1

Let A = (A1, ..., Ax) be a partition. We say that the box (¢, 7) is an inner
corner of X if, when we remove it from [A], we obtain the Yound diagram of
another partition. For instance :

We denote by A~ the set of partitions that are obtained by removing an
inner corner of A. Conversely, we say that a position (i,7) & [A] is an outer
corner of X\ if, when we add it to [\], we obtain the diagram of another
partition. For instance :

We denote by AT the set of partitons that are obtained by adding an outer
corner of \.

Lemma 6.1.3. Let f* = dim S*. Then f* = doper- 1"

Proof. Let T be a standard tableau of shape A - n. Necessarily, n appears in
an inner corner of T', and we obtain another standard tableau by removing
it. O

Theorem 6.1.4 (Branson rule). Take A+ n. Then

Resgzil(S)‘) = @ Sk,

HENT
Indg" (S*) = € s~

HENT
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Proof. Let A+ n, and r; < --- < r the indexes of the rows of A that contain
an inner corner.

e We'll note by A the partition obtained by removing the inner corner
at row r;. Remark that a row can’t bear more that one inner corner.

e If T is any tableau of shape A, and n appears in the inner corner at
row 75, then we’ll denote by T* the tableau obtained by removing the
box containing n.

e Let {T'} be a tabloid with the property that n appears in a row con-
taining an inner corner. We’ll denote by {77} the tabloid obtained by
removing n.

Let G be a finite group, and V a CG-module. Let 0 # W C V be a
submodule. Then V = W @ V/W. Take a sequence

0=V C- - CVp=5

of C&,,—1-modules with the property that V;/V;_1 = SN as C6,,—1-modules.
Then we are done. Denote by V* the C-vector space spanned by all the

standard polytabloids e, where n appears in a row between 71 and r;. It is
clear that Vo =0, V; C Vi,1, and V}, = S*. Define

0;: M» — M

{T*} if n appears in the row r;
{Ty— { 0 otherwise.

It is a C&,,_i-homomorphism, as “n never moves”. Take T a standard
tableau. We have

Oi(er) er: if n appears in row r;
\CT ) — . .
! 0  if n appears in row r; < r;.

Hence O;(V;) = (ep: | T' standard of shape A) = S, and V;_; C ker ©;.
So
0=VoCVinker® CV; C--- C V=5

and dim V;/(V; Nker ©;) =~ S$*". On the other hand, ¥ dim S = S =
A, and so V; = Vi1 1 N Oy, and V;/ (Vi Nker ©;) = V; /V;_1 = SA'. O
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