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Chapter 1

Tableaux and partitions

1.1 Definitions

We denote by Sn the symmetric group on n elements.

Reminders 1.1.1. 1. If (i1 · · · ik), π ∈ Sn, then

π−1(i1 · · · ik)π = (π(i1) · · ·π(ik)).

2. Each element of Sn can be decomposed into a product of disjoint
cycles in a unique way (up the order of the terms). Moreover, disjoint
cycles commutes.

If σ, ρ ∈ Sn are conjugated and have disjoint cycles decompositions
σ = σ1 · · ·σk and ρ = ρ1 · · · ρl, sorted by decreasing length, then clearly
each σi is conjugated to a ρj , and conversely. There is a one-to-one corre-
spondence between the disjoints cycles in the decomposition of σ and those
of ρ. Moreover, conjugates of σi have the same length of σi. Therefore we
come to the following result :

Proposition 1.1.2. Let σ, ρ ∈ Sn be two permutations having disjoint cy-
cles decompositions σ = σ1 · · ·σk and ρ = ρ1 · · · ρl. If σ and ρ are conjugated,
then k = l and {length σi}i≤k = {length ρi}i≤l, seen as multisets.

We introduce now a more convenient object to work with.

Definition 1.1.3 (Partition). Let n ∈ N. A partition of n is a sequence
λ = (λ1, . . . , λk) satisfying

1. λ1 ≥ · · · ≥ λk ≥ 0,

2.
∑k

i=1 λi = n.

We adopt the convention that (λ1, . . . , λk) = (λ1, . . . , λk, 0, 0, . . .), that is,
we can add 0s without changing the partition. We note λ ` n and by P (n)
the set of all partitions of n.
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Take σ ∈ Sn. As disjoint cycles commutes, we can define λ(σ) to be
the list of lengths of the disjoints cycles in the decomposition of σ plus the
trivial permutations (i), sorted in decreasing order. We have that λ(σ) is a
partition of n, which we call the type of σ.

Corollary 1.1.4. Two permutations are conjugate iff they have the same
type.

Corollary 1.1.5. The number of conjugacy classes of Sn is |P (n)|.

Remark 1.1.6. Let σ ∈ Sn. Consider λ(σ) = (λ1, . . . , λk), and denote
mi = |{j | λj = i}|. By combinatorial observations :

|Cl(σ)| = n!
k∏
i=1

1

mi!imi
.

Definition 1.1.7 (Young diagram). Let λ = (λ1, . . . , λk) ` n. Then the
Young diagram [λ] of λ is the shape obtained by the following method : put
λi boxes in the ith row.

Examples 1.1.8. 1. Consider λ = (3, 2) ` 5. Then

[λ] = .

2. Consider λ = (3, 3, 2, 1) ` 9. Then

[λ] = .

Definition 1.1.9 (Young subgroup). Let λ = (λ1, . . . , λk) ` n. The Young
subgroup of Sn corresponding λ is

Sλ = S{1,...,λ1} ×S{λ1+1,...,λ1+λ2} × · · · .

Remark that Sλ
∼=
∏
λi∈λSλi .

Example 1.1.10. If λ = (3, 3, 2, 1) ` 9, then

Sλ = S{1,2,3} ×S{4,5,6} ×S{7,8} ×S{9}.

Definition 1.1.11 (Young tableau). Let λ ` n. A (Young-) tableau is a
bijection between the Young diagram [λ] and the set {1, . . . , n}. In other
terms, it consists in a filling of the Young diagram [λ] with the elements of
{1, . . . , n}.
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Example 1.1.12. Consider λ = (3, 3, 2, 1) ` 9. Then

T =

1 2 3
4 5 6
7 8
9 and S =

3 7 2
6 9 1
4 5
8

are both Young tableaux of shape λ.

1.2 Dominance

Definition 1.2.1 (Dominance of partitions). Let λ = (λ1, . . . , λk), µ =
(µ1, . . . , µk) ` n. We say that λ dominates µ if

j∑
i=1

λi ≥
j∑
i=1

µi, ∀j ≤ k.

We note µE λ.

Examples 1.2.2. 1. We have (3, 3) E (4, 2).

2. Consider λ = (3, 3) = (3, 3, 0) and µ = (4, 1, 1). Then λ 5 µ and
µ 5 λ. Hence, E doesn’t form a total order.

Definition 1.2.3 (Total dominance). We denote by ≤ the lexicographical
order. In other words, let λ = (λ1, . . . , λk), µ = (µ1, . . . , µk) ` n. We note
µ ≤ λ if either

1. λ = µ,

2. µj < λj , where j is the first index where λ and µ differ.

Lemma 1.2.4. Let λ, µ ` n. Then

µE λ =⇒ µ ≤ λ.

Proof. Assume that λ 6= µ, and let j be the first index where λ and µ differ.
Then :

µE λ =⇒
j∑
i=1

µi ≤
j∑
i=1

λi

=⇒ µj ≤ λj .

Lemma 1.2.5 (Dominance lemma for partition). Let λ, µ ` n and T , S
be tableaux of shape λ and µ. If the numbers (elements) in each row of S
appear in different columns in T , then µE λ.

Representation of the Symmetric Groups
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Proof. Lift’em up ! For instance, consider, λ = (4, 2), µ = (3, 3), and
tableaux

T =

1 5 6 3
2 4 and S =

4 6 2
1 5 3 .

The first line of S is (4, 6, 2). The 6 is already in the first line of T . As
(4, 6, 2) lies in different comumns (by hypothesis), we can “lift” the 2 and
the 4 up to the first line of T :

T ′ =

2 4 6 3
1 5 , S =

4 6 2
1 5 3 .

Now, each number of the first line of S is in the first line of T . Hence, if we
sum the numbers, we’ll get a greater or equal result in T ′.

T ′ =

2 4 6 3
1 5

Σ = 15

, S =

4 6 2
1 5 3

Σ = 12

.

This shows that the first line of T ′ is longer (or of the same length) than the
first line in S, and hence λ1 ≥ µ1. We continue by lifting up the numbers in
the second line of S to the first two lines of T ′, which again is possible by
hypothesis, we sum up, and get λ1 + λ2 ≥ µ1 + µ2. We would continue on
with larger tableaux, but the result will always be that µE λ.

Representation of the Symmetric Groups
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Chapter 2

Tabloids and permutations
modules

2.1 Definitions

Let λ ` n. Denote by Tab(λ) the set of all tableaux of shape λ. We then
have an obvious action

Sn × Tab(λ) −→ Tab(λ)

which permutes the numbers in the tableaux. For example

(1 3 6) ·
4 6 2
1 5 3 =

4 1 2
3 5 6 .

Let T be a tableau of shape λ ` n. We define

• R(T ) to be the subgroup of Sn that consists of permutations that
stabilize the rows of T ,

• C(T ) to be the subgroup of Sn that consists of permutations that
stabilize the columns of T .

Lemma 2.1.1. Let T be a tableau of shape λ ` n, and let π ∈ Sn. Then

1. R(πT ) = πR(T )π−1,

2. C(πT ) = πC(T )π−1.

Proof. Let π ∈ Sn. We can write it as a product of transposition. So we
just have to check the lemma for transposition, and it is then very easy.

We define an equivalence relation on Tab(λ) by

T ∼ T ′ ⇐⇒ ∃π ∈ R(T ) such that πT = T ′.
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Equivalence classes are calles tabloid of shape λ. The equivalence class of T
is denoted by {T}. For instance

T =

1 5 6 3
2 4 =⇒ {T} =

1 5 6 3
2 4 =

1 3 5 6
2 4 = · · · .

We have an action of Sn on the set of tabloid Tab(λ)/ ∼ :

Sn × Tab(λ)/ ∼ −→ Tab(λ)/ ∼
(π, {T}) 7−→ {πT}.

It is well defined. Indeed, let T, T ′ ∈ Tab(λ) be such that {T} = {T ′}.
Then by definition, there exists σ ∈ R(T ) such that σT = T ′. We have that
ρ = πσπ−1 ∈ R(πT ), as R(πT ) = πR(t)π−1. Then

ρπT = πσπ−1πT

= πσσT

= πT ′,

and so {πT} = {πT ′}.

Definition 2.1.2 (Permutation module). Let λ ` n. Define the permutation
module Mλ corresponding to the partition λ by

Mλ = C[Tab(λ)/ ∼].

Definition 2.1.3 (Cyclic G-module). Let G be a group, and V be a G-
module. It is said cyclic as a G-module if it is a cyclic module over the ring
CG. In other words, V = C{gv | g ∈ G} for a v ∈ V . Remark that then

x = σiλigiv, ∀x ∈ V.

Proposition 2.1.4. The permutation module Mλ is cyclic, and

Mλ ∼= C[Sn/Sλ].

Proof. Remark that Tab(λ)/ ∼ is a transitive Sn-set. It is then clear that
Mλ is cyclic. Take any {T} ∈ Tab(λ)/ ∼. Then StabSn({T}) ∼= Sλ (recall
the definition of the Young subgroup), and Orb({T}) = Tab(λ)/ ∼, since,
again, the action is transitive. We have Orb({T}) ∼= Sn/Sλ as sets, and so

Mλ = C[Tab(λ)/ ∼] by definition
∼= COrb({T})
∼= C[Sn/Sλ].

Corollary 2.1.5. If λ = (λ1, . . . , λk), then

dimMλ =
n!∏
i λi!

.
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2.2 Character of Mλ

We now try to compute the character of Mλ. Let π ∈ Sn. It is clear that

χMλ(π) = ]{{T} | {πT} = {T}}.

That’s not convenient... Consiter λ to be of length n (just add 0’s). Take
π ∈ Sn. The aim of what’s folloging is still to compute the number of fixed
tabloids by the action of π. Let {T} be such a tabloid, and (x1 · · · xq) be a
q-cycle of π. Then all the numbers xi lies in the same row of T . Hence, we
can “arrange” those cycles among rows of T . If π has mq cycles of length q,
and if rp,q is the number of q-cycle at row p then we have

mq!∏n
i=1 ri,q!

ways to permute those cycles among the rows of the tabloid. Therefore,

χMλ(π) =
∑
X

mq!∏n
i=1 ri,q!

,

where X = {(rp,q)p,q |
∑n

i=1 ri,q = mq and
∑n

i=1 rp,i = λp} describes all the
way of arranging the cycles of π among the rows of T . Remark that

n∏
q=1

(Xq
1 + · · ·+Xq

n)mq =
∑
Y

mq!∏n
i=1 ri,q!

X
r1,q
1 X

2r2,q
2 · · ·Xnrn,q

n ,

where Y = {(rp,q)p,q |
∑n

i=1 ri,q = mq}. So χMλ(π) is the coefficient of

Xλ1
1 · · ·Xλn

n in the above polynomial !

Example 2.2.1. Take λ = (2, 2), µ = (2, 1, 1) ` 4. The partition µ deter-
mines the following polynomial :

(X2
1 +X2

2 +X2
3 +X2

4 )(X1 +X2 +X3 +X4)2,

in which the monomial X2
1X

2
2 has coefficient 2. So χMλ(µ) = 2 (for this

notation, recall that each partition of n completely determine a conjugacy
class of Sn).

Representation of the Symmetric Groups
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Chapter 3

Polytabloids and Specht
modules

3.1 Definition

Take a subset H ⊆ Sn, and define

aH =
∑
σ∈H

σ ∈ CSn,

bH =
∑
σ∈H

sgn(σ)σ =
∑

σ∈C(T )

sgn(σ)σ ∈ CSn.

Let T be a tableau, and consider C(T ). Define

kT = bC(T ) ∈ CSn,

eT = kT {T} ∈Mλ.

Example 3.1.1. Take

T =

4 1 2
3 5 .

We have that

C(T ) = S{3,4} ×S{1,5} ×S{2},

kT = 1− (3 4)− (1 5) + (3 4)(1 5),

eT =

1 2 4
3 5 −

1 2 3
4 5 −

2 4 5
1 3 +

2 3 5
1 4 .

Lemma 3.1.2. If π ∈ Sn, take any tableau T of shape λ ` n. Then

1. kπT = πkTπ
−1,

2. eπT = πeT .
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Proof. 1. We have :

kπT =
∑

σ∈C(πT )

sgn(σ)σ

=
∑

σ∈πC(T )π−1

sgn(σ)σ

=
∑

σ∈C(T )

sgn(σ)πσπ−1

= πkTπ
−1.

2. We have :

eπT = kπT {πT}
= πkTπ

−1{πT}
= πeT .

Definition 3.1.3 (Polytabloid, Specht module). We call eT a polytabloid .
We note Sλ = 〈eT | T ∈ Tab(λ)〉 ≤Mλ the Specht module corresponding to
λ.

Lemma 3.1.4. The submodule Sλ is cyclic.

Proof. Trivial, since eπT = πeT .

Example 3.1.5. Take λ = (1, . . . , 1) = (1n) ` n. Then all tabloids have
form

x1

x2

...
xn .

There is n! of them, so dimMλ = n!.

3.2 Irreducibility of Sλ

Define an inner product on Mλ by

〈{T}, {T ′}〉 =

{
1 if {T} = {T ′}
0 otherwise,

∀T, T ′ ∈ Tab(λ),

which we extend by linearity.

Lemma 3.2.1. The inner product 〈−,−〉 is Sn-invariant.

Representation of the Symmetric Groups
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Proof. Trivial.

Lemma 3.2.2 (The sign lemma). Let H ≤ Sn,

1. if π ∈ H, then πbH = bHπ = sgn(π)bH ,

2. if u, v ∈Mλ, then 〈bHu, v〉 = 〈u, bHv〉,

3. if (i j) ∈ H, then bH = κ(id−(i j)), for some κ ∈ CSn,

4. if (ij) ∈ H and if i and j are in the same row of a tableau T ∈ Tab(λ),
then bH{T} = 0.

Proof. 1. We have

πbH = π
∑
σ∈H

sgn(σ)σ

=
∑
σ∈H

sgn(σ)πσ

=
∑
σ∈H

sgn(π) sgn(πσ)πσ since sgn(π)2 = 1

= sgn(π)bH .

We do similarly to show that bHπ = sgn(π)bH .

2. If u, v ∈Mλ, then

〈bHu, v〉 =
∑
σ∈H

sgn(σ)〈σu, v〉

=
∑
σ∈H

sgn(σ)〈u, σ−1v〉

= 〈u, bHv〉.

3. If (i j) ∈ H, then K = {id, (i j)} ≤ H, and there exists a set of
representative π1, . . . , πr ∈ H such that

H =
r∐

k=1

πkK.

Hence :

bH =
∑
σ∈H

sgn(σ)σ

=

r∑
k=1

sgn(πk)πk︸ ︷︷ ︸
κ

(id−(i j)).

Representation of the Symmetric Groups
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4. We have

bH{T} = κ(id−(i j)){T}
= κ({T} − {(i j)T})
= 0.

Lemma 3.2.3. Take λ, µ ` n, T ∈ Tab(λ) and T ′ ∈ Tab(µ), then

1. if kT {T ′} 6= 0, then µE λ,

2. if kT {T ′} 6= 0 and λ = µ, then kT {T ′} = ±eT .

Proof. 1. Pick i and j in the same row of T ′. Then they cannot be in the
same column of T , and hence, by dominance lemma, µE λ.

2. We have that T and T ′ have the same shape. There exists π ∈ Sn

such that T ′ = πT . Since kT {T ′} 6= 0, we have that π ∈ C(T ). Hence
:

kT {T ′} = kT {πT}

=
∑

σ∈C(T )

sgn(σ)σ{πT}

= sgn(π)eT .

Corollary 3.2.4. If u ∈Mλ, and T ∈ Tab(λ), then kTu = ceT , for a c ∈ C.

Proof. Since u ∈Mλ, we can write u =
∑

i ci{Ti}, and so

kTu =
∑
i

ci kT︸︷︷︸
=0 or ±eT

{Ti}

= ceT .

Theorem 3.2.5 (Submodule theorem). If U ≤ Mλ is a submodule, then
either Sλ ≤ U or U ≤ (Sλ)⊥.

Proof. If u ∈ U and T ∈ Tab(λ), then kTu = ceT ∈ U . Therefore, if ∃u ∈ U
and ∃T ∈ Tab(λ) such that kTu 6= 0, then c 6= 0. So we have that ceT ∈ U ,
and so eT ∈ U . As Sλ is generated by eT , ∀T ∈ Tab(λ), we have Sλ ≤ U .

Representation of the Symmetric Groups
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Assume now that ∀u ∈ U , ∀T ∈ Tab(λ), kTu = 0. Then we have that
〈u, eT 〉 = 0, ∀u ∈ U , ∀T ∈ Tab(λ). Indeed,

〈u, eT 〉 = 〈u, kT {T}〉
= 〈kTu, {T}〉
= 0.

So U ≤ (Sλ)⊥.

Corollary 3.2.6. The Specht-modules Sλ are irreducible.

But are they isomorphic ?

Lemma 3.2.7. Let θ : Sλ −→Mµ, for λ, µ ` n.

1. If θ 6= 0, then µE λ.

2. If λ = µ, then θ = c idSλ, for a c ∈ C.

Proof. 1. We know that ∃eT ∈ Mλ such that θ(eT ) 6= 0. Since Mλ =
Sλ⊕(Sλ)⊥, we can extend θ into θ̂ by agreeing that θ̂|(Sλ)⊥ = 0. Hence

θ(eT ) = θ(kT {T})
= kT θ̂({T})
∈Mµ.

So 0 6= θ̂({T}) =
∑

i ci{Ti}, where Ti ∈ Tab(µ). So there exist at least
one Ti such that kT {Ti} 6= 0. So µE λ.

2. As above, we extend θ into θ̂ : Mλ −→ Mλ. We have θ(eT ) =∑
i ci{Ti}, where Ti ∈ Tab(λ). Then, θ(kT {T}) = kT θ̂({T}) = ceT .

Then

θ(eπT ) = θ(πeT )

= θ(πkT {T})
= πkT θ̂({T})
= πceT

= ceπT .

So θ(u) = cu, ∀u ∈ Sλ. Since the result holds for all eT (which are the
generators of Sλ).

Lemma 3.2.8. The set {Sλ | λ ` n} is a full set of irreducible modules of
Sn.

Representation of the Symmetric Groups
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Proof. We just have to prove that they are pairwise non isomorphic. Assume

φ : Sλ
∼=−→ Sµ is a non zero isomorphism. We extend it into φ̂ : Mλ −→

Sµ −→Mµ. So φ̂ 6= 0, and µE λ. On the other hand, φ̂−1 : Mµ −→Mλ is
non zero either, and so λE µ. Finally, λ = µ, and Sλ = Sµ.

Corollary 3.2.9. Let λ ` n. Consider the following decomposition into
irreducible modules :

Mλ =
⊕
µ`n

(Sµ)⊕mλ,µ .

Then mλ,µ = 0 if µ 6 Dλ. Moreover, mλ,λ = 1.

Proof. Recall that

mλ,µ = 〈χSµ , χMλ〉
= dim Hom(Sµ,Mλ).

If mλ,µ > 0, then there exists a non zero morphism θ : Sµ −→ Mλ, which

indices a non zero morphism θ̂ : Mµ −→Mλ, and so λE µ. Moreover,

mλ,λ = 〈Sλ,Mλ〉
= dim Hom(Sλ,Mλ)

= 1,

by a previous result.

3.3 Basis of Sλ

We call a tableau T ∈ Tab(λ) standard if the entries of T are sorted increas-
ingly in all its rows and all its columns.

Examples 3.3.1. Consider λ = (4, 2) ` 6, then

1 5 6 3
2 4

is not standard, whereas

1 2 4 6
3 5

is.

Definitions 3.3.2 (From exercise set 5). 1. A composition of an integer
n is a sequence of non-negative integers λ = (λ1, . . . , λk), such that∑k

i=1 λi = n. The integers λi are the parts of the composition.

Representation of the Symmetric Groups
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2. Let λ and µ be two composition of n. We say that λ dominates µ,
which is denoted by µE λ, if

j∑
i=1

µi ≤
j∑
i=1

λi, ∀j ≤ k.

3. Let {T} be a tabloid of shape λ ` n. For each i ≤ n, we define the
composition λi if i by

λij = the number of entries that are ≤ i in the j-th row of {T}.

The sequence of compositions (λ1, . . . , λn) is called the composition
sequence of {T}.

4. Let {T} and {T ′} be two tabloids of shape λ ` n, with corresponding
composition sequences (λ1, . . . , λn) and (µ1, . . . , µn) respectively. We
say that {T} dominates {T ′}, which is denoted by {T ′}E {T}, if

µi E λi, ∀i ≤ n.

Reminder 3.3.3. Let (A,≤) be a poset.

1. An element a ∈ A is a maximum if b ≤ a, ∀b ∈ A.

2. An element a ∈ A is maximal if a ≤ b =⇒ a = b, ∀b ∈ A.

Lemma 3.3.4 (Dominance lemma for tabloids). Letλ ` n, and T ∈ Tab(λ).
If k < l ≤ n, and k appears in a lower row (that is, drawn lower) than l in
[T ], then

{T}C (k l){T}.
Proof. Exercise 4 from sheet 5.

Corollary 3.3.5. If T is a standard tableau, and if {S} appears in eT , then
{S}C {T}.
Lemma 3.3.6. Let v1, . . . , vm ∈ Mλ. Suppose that each vi admit {T i} as
maximum tabloid in their decomposition, and that those {T i}s are distincts.
Then v1, . . . , vm are linearly independent.

Proof. Without loss of generality, we can assume that {T 1} is maximal
among all tabloids. Then {T 1} cannot appear in vi, ∀i 6= 1, or it would
otherwise be maximum in vi, and so {T 1} = {T i}. Suppose that v1 =
d{T 1}+

∑
j dj{Tj}. Let c1, . . . , cm ∈ C. Then

m∑
i=1

civi = 0 =⇒
m∑
i=1

ci{T i} = 0

=⇒ c1d{T 1}+
∑
j

c1dj{Tj}+
m∑
i=2

civi = 0

=⇒ c1 = 0,

Representation of the Symmetric Groups
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as {T1} only appears once, with coefficient c1d, and d 6= 0. So
∑m

i=2 dici{T i} =
0, and we conclude by induction.

Proposition 3.3.7. The set {eT | T standard of shape λ} ⊆ Sλ is linearly
independent.

Proof. Remark that a standard tabloid {T} is maximum among the terms
of eT . We can conclude using the previous lemma.

We now show that the standard polytabloids generate Sλ, that is, gen-
erate any other eT , where T isn’t standard. We can always assume that
the columns of T are increasing from top to bottom, as this property is al-
ways true up to column stabilizer : if T ∈ Tab(λ) doesn’t have the required
property, then ∃σ ∈ C(T ) such that σT does. Moreover,

eσT = σeT

= σ
∑

τ∈C(T )

sgn(τ){τT}

= sgn(σ)eT .

So if T isn’t standard, we can assume that the order problems occur in the
rows of T .

Definition 3.3.8 (Garnir element). Let A and B be two disjoint finite
sets. Consider the permutations groups SA, SB, and SA∪B. We have that
SA ×SB ≤ SA∪B. Let π1, . . . , πr be a family of representatives of the left
cosets of SA ×SB :

SA∪B =

r⊎
i=1

πi(SA ×SB),

where ] stands for the disjoint union, and where π1 = id. We define a garnir
element of (A,B) to be

gA,B =
r∑
i=1

sgn(πi)πi ∈ CSA∪B.

This element depends on the choice of representatives, and is therefore not
unique !

The group SA]B acts obviously on the set of all possible ordered pairs
(A′, B′) satisfying |A′| = |A|, |B′| = |B|, and A′ ] B′ = A ] B. For every
such pair (A′, B′), assume that π(A′,B′) is such that

π(A′,B′)(A,B) = (A′, B′).

The π(A′,B′) form a family of representatives of the cosets of SA ×SB.
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Definition 3.3.9 (Garnir element of a tableau). Let λ ` n, T ∈ Tab(λ),
j < n, A a set of elements of the jth column of T , and B a set of elements
in the j + 1th column of T . Then a garnir element of T is a garnir element
of the pair (A,B), choosing the representatives π such that the elements of
A ]B are sorted in increasing order in πT .

Example 3.3.10. Consider (3, 2, 1) ` 6, and

T =

1 2 4
5 3
6 .

The we can define A = {5, 6} and B = {2, 3} :

1 2 4
5 3
6 .

The representatives satisfying the above condition are {id, (2 3 5), (2 3 6 5)}.
Indeed :

(2 3 5)T =

1 3 4
2 5
6 ,

(2 3 6 5)T =

1 3 4
2 6
5 .

The corresponding garnir element is then

gA,B = id +(2 3 5)− (2 3 6 5).

Proposition 3.3.11. If T is a tableau, choose A and B as before. If |A]B|
is greater than the number of elements in the jth column, then gA,BeT = 0.

Proof. We first show that bSA]BeT = 0. Let σ ∈ C(T ). Then there are
a, b ∈ A ] B such that a and b appear in the same row of σT . Then,
(a b) ∈ SA]B, and so by previous lemma, bSA]Bσ{T} = 0, which leads to
our assertion. We know that

SA]B =
r⊎
i=1

πi(SA ×SB),

and so bSA]B = gA,BbSA×SB . Using our assertion, we have that gA,BbSA×SBeT =
0. However, SA ×SB ≤ C(T ), and so

0 = gA,BbSA×SBeT

= gA,B|SA ×SB|eT .
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Definition 3.3.12. Let T ∈ Tab(λ). We define the column tabloid to be
the orbit of T under the action of C(T ). De denote this set by [T ]. We
define dominance for such tabloids in a similar fashion that for row tabloids.

Example 3.3.13. Let (2, 1) ` 3, and

T =

1 3
2 .

Then

[T ] =

1 3
2 .

Proposition 3.3.14. The set {eT | T ∈ Tab(λ), T standard of shape λ}
generates Sλ.

Proof. We only show that {eT | T ∈ Tab(λ), T standard of shape λ} gen-
erates {eT | T ∈ Tab(λ), T of shape λ}. If T is a tableau such that [T ] is
maximal, then T shares its tabloid [T ] with a standard tableaux, and so eT
is generated by the standard polytabloids. If T doesn’t have such a property,
assume by induction hypothesis that any tableau S such that [T ]E [S] does.
We can assume without loss of generality that T has sorted comumns (from
top to bottom). As [T ] isn’t standard, the violations of standardness occur
in the rows. Pick the first one (that is the highest row in the drawing that
present such a violation). Here is a little drawing of T :

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · ·

· · ·

a1

...

ai

...

...

...

ap

b1

...

bi

...

bq

≥

.

Define A = {ai, . . . , ap}, and B = {bi, . . . , bq}. Since |A ] B| ≥ p, we know
by a previous proposition that gA,BeT = 0. Then :

gA,BeT = eT +

r∑
i=2

sgn(πi)πieT = 0 remember : π1 = id

=⇒ eT = −
r∑
i=2

sgn(πi)πieT = −
r∑
i=2

sgn(πi)eπiT .

Since [T ] E [πiT ], ∀i ≥ 2, the result follows by decreasing induction.
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Corollary 3.3.15. 1. The set {eT | T ∈ Tab(λ), T standard of shape λ}
is a basis of Sλ.

2. If f (λ) = dimSλ is the number of standard tableaux of shape λ, then

n! =
∑
λ`n

(f (λ))2.

3.4 Basis of HomCSn
(Sλ,Mµ)

Definitions 3.4.1 (From exercise sheet 6). 1. A generalized Young tableau
of shape λ ` n is a Young diagram of shape λ filled from numbers from
1 to n, allowing repetitions.

2. The type or content of a generalized Young tableau T is the composi-
tion µ, where µi is the number of i entry in T .

3. Define
Tλ,µ = {T | T has shape λ and content µ}.

4. A generalized tableau is said semistandard if its rows are weakly in-
creasing, and its columns strictly increasing (from top to bottom).

5. Define
T 0
λ,µ = {T ∈ Tλ,µ | T is semistandard}.

6. Define the Kostka number to be

Kλ,µ = |T 0
λ,µ|.

Example 3.4.2. This

3 2
2

is a nonsemistandard generalized tableau of shape (2, 1) and content (0, 2, 1).
This

1 1
3

is a nonsemistandard tableau of shape (2, 1) and content (2, 0, 1).

Let t ∈ Tλ,µ. Denote by t(i) the i-th entry of t :

t(1) t(2) · · · · · · · · · · · · t(λ1)

t(λ1 + 1) · · · · · · · · · t(λ1 + λ2)

...
...

...

· · · · · · t (
∑
λi) .
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From now on, denote T0 be the tabeau such that T0(i) = i, i.e. it is of the
following form :

1 2 · · · · · · · · · · · · λ1

λ1 + 1 · · · · · · · · · λ1 + λ2

...
...

...

· · · · · ·
∑
λi.

Let S be a tablöıd of shape µ. We define t ∈ Tλ,µ from {S} by :

t(i) = the index of the row in which i appears in {S}.

Example 3.4.3. Choose λ = (3, 2) and µ = (2, 2, 1). We have

{S} =

1 4
2 3
5 =⇒ t =

1 2 2
1 3 .

This construction defines a bijection from tabloids of shape µ to Tλ,µ,
which we extend into an isomorphism of vector space

Θ : Mµ −→ CTλ,µ.

We want this to be a CSn-isomorphism, and so we check that it is compatible
with the action of Sn. We have an action

Sn × Tλ,µ −→ Tλ,µ
(π, t) 7−→ πt,

where πt(i) = t(π−1(i)). Let {S} ∈Mµ. We have

Θ(π{S})(i) = the index of the row in which i appears in π{S}
= the index of the row in which π−1(i) appears in {S}
= Θ({S})(π−1(i))

= πΘ({S}).

So Θ is a CSn-isomorphism.
We now take interest in HomCSn(Mλ,Mµ). Let t ∈ Tλ,µ. We can define

the tabloids {t} and [t] in a similar fashion as we did with tableaux. Define
a homomorphism

Θt : Mλ −→ CTλ,µ ∼= Mµ

{T0} 7−→
∑
S∈{t}

S.

Representation of the Symmetric Groups
20



This defines Θt completely since Mλ can be generated only by T0 as [σn]-
module. Remark that this construction makes Θt into a CSn-homomorphism.
Denote Θ̄t = Θt|Sλ . We have

Θ̄t(eT0) = Θ̄t(kT0{T0})
= kT0Θt({T0})

= kT0
∑
S∈{t}

S.

Proposition 3.4.4. Let T0 be our fixed tableau of shape λ, and take t ∈ Tλ,µ.
Then kT0t = 0 iff t has two equal elements in the same column.

Proof. =⇒ If kT0t = 0, then

t+
∑

π∈C(T0)\{id}

sgn(π)πt = 0.

As the generalized tableaux form a basis, this zero linear combina-
tion forces the term −t to appear in

∑
π∈C(T0)\{id} sgn(π)πt. So ∃σ ∈

C(T0) \ {id} such that sgn(σ) = −1, and such that σt = t. As σ is a
column stabilizer, this forces t to have at least two equal elements in
a same column.

⇐= Suppose t(i) = t(j), with the i-th and j-th entries in the same column.
We have (i j) ∈ C(T0). By the sign lemma, ∃k ∈ CSn such that
kT0 = k(id−(i j)). So

kT0t = kt− k(i j)t

= kt− kt
= 0.

Recall that Kλ,µ = 0 =⇒ µ C λ. We define the dominance order on
the generalized tabloids and on the generalized column tabloids in the same
fashion as we did with tabloids.

Lemma 3.4.5 (Dominance lemma for generalized column tabloids). If t ∈
Tλ,µ, k and l appears in the i-th and j-th row respectively, i < j, k < l, then
[t] C [(k l)t].

Let V be a C-vector space, and B = {b1, . . . , bm} one of its basis. Sup-
pose that ∼ is an equivalence relation on V , and that ≤ is a partial order
on V/ ∼.

Lemma 3.4.6. Let v1, . . . , vn ∈ V , and assume that
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1. each vi has a maximal component in bi,

2. [b]∼ ≤ [bi]∼, for all b in which vi has a nonzero component.

Then v1, . . . , vn are linearly independent.

Proof. Exercise 7.2.

Lemma 3.4.7. Let V and W be two C-vector spaces. If Θ1, . . . ,Θn ∈
HomC(V,W ), and if there exists v ∈ V such that Θ1(v), . . . ,Θn(v) are
linearly independent in W . Then Θ1, . . . ,Θn are linearly independent in
HomC(V,W ).

Proof. Trivial. Indeed if
∑n

i=1 αiθi = 0 then
∑n

i=1 αiθi(v) = 0, therefore
αi = 0 ∀i.

Proposition 3.4.8. The set {Θ̄t | t ∈ T 0
λ,µ} is linearly independent in

HomCSn(Sλ,Mµ).

Proof. Suppose that T 0
λ,µ = {t1, . . . , tm}. In the light of the previous lemmas,

we only prove that Θ̄t1(eT0), . . . , Θ̄tm(eT0) are linearly independent in Mµ.
We have

Θ̄ti(eT0) = Θ̄ti(kT0{T0})
= kT0Θti({T0})

= kT0
∑
S∈{ti}

S.

Since ti is semistandard, we have that [S] C [ti], ∀S ∈ {ti}, S 6= ti, by
dominance lemma. Hence [ti] is the maximum term of kT0Θti({T0}) with a
nonzero coefficient. Moreover, the tis are distinct. So by previous lemma,
the Θ̄ti(eT0) are linearly independent.

Lemma 3.4.9. Assume that Θ ∈ HomCSn(Sλ,Mµ) is such that

Θ(eT0) =
∑

ctt.

Then

1. If π ∈ C(T0) and t1 = πt2, then ct1 = sgn(π)ct2.

2. If t has a repeat in a column, then ct = 0.

3. If Θ 6= 0, then there is a semistandard tableau t such that ct 6= 0.
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Proof. 1. We have

πΘ(eT0) = Θ(πeT0)

= Θ(sgn(π)eT0)

= sgn(π)Θ(eT0).

The result follows.

2. Assume that t has a repeat un a column, say at entries i and j. We
have (i j)t = t, and so ct = −ct = 0.

3. Assume that Θ 6= 0. There is a ct2 6= 0, and we can take it to be
maximal for this property. By previous lemma, we can take t2 to have
increasing columns, and since t2 doesn’t have any repeats, we can take
it to have strictly increasing columns. Any violation is semistandard-
ness occurs in the rows.

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · ·

· · ·

a1

...

ai

...

...

...

ap

b1

...

bi

...

bq

>

∧ ∧

∧ ∧

∧ ∧

∧

∧

.

Take A = {ai, . . . , ap}, and B = {b1, . . . , bi}. Consider a garnir ele-
ment gA,B with id beeing one of its term. We have gA,BeT0 = 0, and
so

gA,B
∑

ctt = gA,BΘ(eT0)

= Θ(gA,BeT0)

= 0.

We have that gA,Bt2 = t2 +
∑
· · · . There is a generalized tableau S

and a permutation π appearing in gA,B such that πS = t2, and so
[t2] C [S], a contradiction with the maximality of t2.

Proposition 3.4.10. The set {Θ̄t | t ∈ T 0
λ,µ} spans HomCSn(Sλ,Mµ).
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Proof. Let Θ ∈ HomCSn(Sλ,Mµ), such that

Θ(eT0) =
∑

ctt.

Define LΘ = {S ∈ T 0
λ,µ | [S] E [t] for some term t of Θ(eT0)}. By induction

on |LΘ| :

• If |LΘ| = 0, then Θ = 0.

• If |LΘ| > 0, then Θ 6= 0, and we can take t2 to be the semistandard
tableau appearing in Θ(eT0) with [t2] maximal. Take

Θ2 = Θ− ct2Θ̄t2 .

Remark that LΘ2 ⊆ LΘ. Moreover, t2 ∈ LΘ \ LΘ2 (exercise), and so
|LΘ2 | < |LΘ|. The result follows by induction.

Corollary 3.4.11. The set {Θ̄t | t ∈ T 0
λ,µ} is a basis of HomCSn(Sλ,Mµ).

Corollary 3.4.12 (Young’s rule). We have

Mµ ∼=
⊕
λ`n

(Sλ)⊕Kλ,µ .

Proof. If mλ,µ is the coefficient of Sλ in Mµ, then

mλ,µ = dim HomCSn(Sλ,Mµ)

= |T 0
λ,µ|

= Kλ,µ.
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Chapter 4

Symmetric functions

4.1 Definitions

Let’s start with Z[X1, . . . , Xn]. We have an obvious action

Sn × Z[X1, . . . , Xn] −→ Z[X1, . . . , Xn]

(σ, f(X1, . . . , Xn)) 7−→ f(Xσ(1), . . . , Xσ(n)).

We call a polynomial symmetric if σf(X1, . . . , Xn) = f(X1, . . . , Xn), ∀σ ∈
Sn, and denote by Λn the subring of Z[X1, . . . , Xn] of symmetric polynomi-
als. We have a grading

Z[X1, . . . , Xn] =
⊕
k≥0

Z[X1, . . . , Xn]k,

where Z[X1, . . . , Xn]k is the subgroup of homogeneous polynomials of degree
k. Wa obtain an induced grading

Λn =
⊕
k≥0

Λkn,

where Λkn is the subgroup of Z[X1, . . . , Xn]k of homogeneous symmetric poly-
nomials of degree k. Let α = (α1, . . . , αn). Denote Xα = Xα1 · · ·Xαn . Take
λ a partition (not necessarily of n) that has length l(λ) ≤ n. Define

mλ(X1, . . . , Xn) =
∑

σ∈Sn|Stab(λ)

Xσλ,

where σ runs through Sn such that σλ doesn’t repeat. It is clear that,
mλ(X1, . . . , Xn) are symmetric polynomials. Moreover, λ 6= µ impliesmλ(X1, . . . , Xn) 6=
mµ(X1, . . . , Xn).

Take f(X1, . . . , Xn) a nonzero symmetric polynomial. Then Xα appears
in f(X1, . . . , Xn), for some α. Since f(X1, . . . , Xn) is symmetric, Xσα also
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appears, ∀σ ∈ Sn. Take τ ∈ Sn such that τα = λ is a partition. We have
that mλ(X1, . . . , Xn) appears in f(X1, . . . , Xn), and so

〈mλ(X1, . . . , Xn) | l(λ) ≤ n, λ partition〉 = Λn.

The later set is moreover a Z-basis. We then have that {mλ(X1, . . . , Xn) |
l(λ) ≤ n, λ ` k} is a basis of Λkn. If k ≤ n, we can drop the condition that
l(λ) ≤ n.

Take n ≤ m, and consider

ρ : Z[X1, . . . , Xm] −→ Z[X1, . . . , Xn]

Xi 7−→
{
Xi if i ≤ n,
0 otherwise.

From that, we build

ρm,n : Λm −→ Λn

mλ(X1, . . . , Xm) 7−→ mλ(X1, . . . , Xn),

where l(λ) ≤ n, and

ρkm,n : Λkm −→ Λkn

mλ(X1, . . . , Xm) 7−→ mλ(X1, . . . , Xn),

where again, l(λ) ≤ n. If k ≤ n ≤ m, then the later map is a bijection.
Let Λk be the set of sequences of the form (fi)i∈N, where

1. fn ∈ Λkn,

2. fm(X1, . . . , Xn, 0, . . .) = fn(X1, . . . , Xn), ∀m ≥ n.

Obviously, Λk is a Z-module. Assume that k ≤ n, and define

ρn : Λk −→ Λkn

(fi)i∈N 7−→ fn.

Remark that this a Z-isomorphism (small exercise). So for everymλ(X1, . . . , Xn),
there exists mλ ∈ Λk such that

ρn(mλ) = mλ(X1, . . . , Xn).

Here, mλ and mλ(X1, . . . , Xn) are two distinct things that live on different
worlds !!! Therefore, Λk is free with basis {mλ | λ ` n}.
Example 4.1.1. Take λ = (4, 1) ` 5. Then

• m0 = 0,

• m1 = 0,

• m2 = X4
1X2 +X1X

4
2 ,

• m3 = X4
1X2 +X1X

4
2 +X4

1X3 +X1X
4
3 +X4

2X3 +X2X
4
3 ,

• and so on...
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4.2 Elementary symmetric functions

Define

e0 = 1,

er =
∑

i1<···<ir

Xi1 · · ·Xir .

Remark that er = m(1r), and therefore is symmetric., and so en ∈ Λ. If λ is
a partition, say λ = (λ1, . . . , λp), then define eλ = eλ1 · · · eλp .

Proposition 4.2.1. 1. The set {eλ | λ ` k} is a Z-basis of Λk.

2. The elements er are algebraically independent, and

Λ = Z[e1, . . .],

Λn = Z[e1, . . . , en].

Proof. 1. Let λ̃ be the transposed partition of λ (i.e. the partition cor-
responding to the transposed Young diagram [λ]t). With respect to
the lexicographical order, the following monomial is the highest that
appears in eλ̃ :

(X1 · · ·Xλ̃1
) · · · (X1 · · ·Xλ̃q

= Xλ1
1 · · ·X

λp
p .

Therefore, mλ(X1, . . . , Xn) appears in eλ̃ with coefficient 1. So {eλ |
λ ` k} generates {mλ(X1, . . . , Xn) | λ ` k} and so Λk. More-
over, they are algebraically independent, again by the fact that each
mλ(X1, . . . , Xn) appears with coefficient one in and only in eλ̃.

2. Immediate from the first point.

4.3 Complete symmetric functions

Definition 4.3.1. Let L be a field, S un subset de L and K a subfield
of L, S is algebraically free over K (or equivalently its elements are al-
gebraically independant over K) if, for all finite sequence of distinct ele-
ments of S (s1, . . . , sn) and all non zero polynomial P (X1, . . . , Xn) ∈ K[X],
P (s1, . . . , sn) 6= 0.

Define

h0 = 1,

hr =
∑

i1≤···≤ir

Xi1 · · ·Xir =
∑
λ`r

mλ.

Those are obviously symmetric functions. If λ is a partition, say λ =
(λ1, . . . , λp), then define hλ = hλ1 · · ·hλp .

Representation of the Symmetric Groups
27



Proposition 4.3.2. 1. The set {hλ | λ ` k} is a Z-basis of Λk.

2.

3. The elements hr are linearly independent, and

Λ = Z[h1, . . .],

Λn = Z[h1, . . . , hn].

Proof. 1. We already know that Λ = Z[e1, . . .]. Define

ω : Λ −→ Λ

ei 7−→ hi,

which we extend by linearity. We prove that ω is a bijection by showing
that ω2 = idΛ. Consider the elements of Λ[[t]] :

E(t) =
∑
r∈N

ert
r

=
∏
r≥1

(1 +Xit),

the later equality is a small combinatorial exercise, and

H(t) =
∑
r∈N

hrt
r

=
∏
i≥1

∑
r∈N

(Xit)
r

=
∏
i≥1

1

1−Xit
.

Remark that E(t)H(−t) = 1, and so tn has coefficient 0 in E(t)H(−t) =
1. So

n∑
r=0

(−1)ren−rhr = 0.

We prove that ω(hr) = er by induction on r. If r = 0, it is clear. If
r = n+ 1, we know that

ω

(
n∑
r=0

(−1)ren−rhr

)
=

n∑
r=0

(−1)rhn−rω(hr)

= 0.
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So

0 =

n+1∑
r=0

(−1)rhn+1−rω(hr)

=
n∑
r=0

(−1)rhn+1−rω(hr) + (−1)n+1h0ω(hn+1),

and it follows from above that ω(hn+1) = en+1.

2. Immediate from the first point.

4.4 Schur functions

Definition 4.4.1 (From exercise sheet 8).

1. Define the rth power sum by

pr =
∑
i

Xr
i ∈ Λr.

Define pλ =
∏
i pλi .

2. Define
zλ =

∏
i≥1

mi!i
mi ,∈ N

where mi = ]{λj | λj = i}.

Consider Z[X1, . . . , Xn], and take a = (a1, . . . , an). Define

αa =
∑
σ∈Sn

sgn(σ)Xσa ∈ AΣa
n ,

where σa = (aσ(1), . . . , aσ(n)). It is an antisymetric polynomial. Observe
that if ai = aj for i 6= j, then αa = 0. Hence, we can restrict to the cases
where a1 > · · · > an ≥ 0. Take a = λ + δ, where λ is a partition of length
at most n. We have δ = (n− 1, n− 2, . . . , 1, 0). Hence clearly

αa = det(X
λ
j +n−j
i )i,j

= det(X
aj
i )i,j .

The polynomial αλ+δ is divided by Xi −Xj in Z[X1, . . . , Xn]. Hence∏
i<j

Xi −Xj

 |αλ+δ.
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Moreover,∏
i<j

Xi −Xj = det(Xn−j
i )i,j Vandermonde det.

= αδ.

So αδ|αλ+δ. Define the Schur polynomial

Sλ(X1, . . . , Xn) =
αλ+δ

αδ
=

det(X
λj+n−j
i )i,j

det(Xn−j
i )i,j

∈ Λn.

This is a symmetric polynomial, as quotient of two antisymmetric polyno-
mials. If l(λ) ≤ n, and Sλ(X1, . . . , Xn, 0) = Sλ(X1, . . . , Xn), then define the
Schur function as

Sλ = (0, Sλ(X1), Sλ(X1, X2), . . .).

Proposition 4.4.2. The set {Sλ(X1, . . . , Xn) | l(λ) ≤ n} is a Z-basis of
Λn.

Proof. Take An to be the submodule of the antisymmetric polynomials. If
f is antisymmetric, we can write f = αδf

′, where f ′ is symmetric. Define

Φ : Λn −→ Λn

f 7−→ αδf.

This is a Z-isomorphism. We have that {αλ+δ | l(λ) ≤ n} is a Z-basis of
An. Moreover,

Φ(Sλ) = αδSλ

= αλ+δ.

So {Sλ(X1, . . . , Xn) | l(λ) ≤ n} is also a Z-basis of Λn.

Corollary 4.4.3. 1. The Schur functions are a Z-basis of Λ.

2. The set {Sλ | l(λ) = k} is a Z-basis of Λk.

Recall that Z[e1, . . .] = Z[h0, . . .]. Take Sλ ∈ Z[e1, . . .] = Z[h0, . . .].

Proposition 4.4.4. Assume that l(λ) ≤ n, and l(λ̃) 6= m.

1. (Jacobi–Trudi, 1841) We have

Sλ = det(hλi−i+j)i,j .

2. (Giambelli, 1903) We have

Sλ = det(eλ̃i−i+j)i,j .
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Proof. 1. For 1 ≤ k ≤ n, denote by ekr the elementary r-symmetric poly-

nomial on {X1, . . . , X̂k, . . . , Xn}. Let a = (a1, . . . , an),

M =
(

(−1)n−iekn−i

)
i,k
,

Aa = (Xai
j )i,j ,

Ha = (hai−n+j)i,j ,

Ek(t) =
n−1∑
r=0

ekr t
r = πi 6=k1 +Xit.

We know that

H(t)E(t) =
1

1−Xkt
.

Consider the coefficient of tai :

n∑
j=1

(−1)njhai−n+je
k
n−j = Xai

k .

So HaM = Aa, which shows that

det(Ha)︸ ︷︷ ︸
=1

det(M) = det(Aa)︸ ︷︷ ︸
=αa

.

Therefore, det(M) = αa. Take now α = λ+ δ. We obtain

det(Hλ+δ)αδ = αλ+δ,

and so det(Hλ+δ) = Sλ.

2. Exercise.

Example 4.4.5. Take λ = (4, 1). Then

S(4,1) =

∣∣∣∣h4 h5

h0 h1

∣∣∣∣ = h4h1 − h5.

Lemma 4.4.6. We have

det

(
1

1−XiYj

)n
i,j=1

=

(∏
i<j Xi −Xj

)(∏
i<j Yi − Yj

)
∏
i,j 1−XiYj

.

Lemma 4.4.7. We have∏
i,j

1

1−XiYj
=
∑
λ

Sλ(X)Sλ(Y ).
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Consider the previous automorphism ω : Λ −→ Λ. We have

ω(Sλ) = ω(det(hλi−i+j)i,j)

= det(eλi−i+j)i,j

= Sλ̃.

Define

〈−,−〉 : Λ× Λ −→ Z
(hλ,mµ) 7−→ δλ,µ,

which we extend by linearity.

Theorem 4.4.8.

1. 〈Sλ, Sµ〉 = δλ,µ.

2. 〈pλ, pµ〉 = zλδλ,µ.
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Chapter 5

Induced modules

Assume that G is a group, and that H ≤ G is a subgroup. If V is a
KG-module, then V |H is the restricted KH. Conversely, if W is a KH-
module, can we construct a KG-module out of it ? Let {s1, . . . , sr} be the
representatives of the left cosets G/H. Write

G =
r∐
i=1

siH.

Each element of G is of the form g = sih, for some 1 ≤ i ≤ r, and h ∈ H.
Consider V = W⊕r. We have that G acts on V by :

G× V −→ V

(g, (w1, . . . , wr)) 7−→ (hg,σ−1
g (1)wσ−1

g (1), . . . , hg,σ−1
g (r)wσ−1

g (r)).

Denote by WG = IndGH(W ) = V . We can embed W into V in the following
way :

W ↪−→ V

w 7−→ (w, 0, . . . , 0).

We have

KG =

r⊕
i=1

KsiH,

and

KG⊗KH W ∼=
r⊕
i=1

KsiH ⊗KH W

∼=
r⊕
i=1

si ⊗W︸ ︷︷ ︸
{si⊗w|w∈W}

.
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So every element of KG⊗KH W is of the form x =
∑r

i=1 si ⊗ wi. Moreover

g
r∑
i=1

si ⊗ wi =
r∑
i=1

(gsi)⊗ wi

=
r∑
i=1

sσg(i)hg,i ⊗ wi

=
r∑
i=1

sσg(i) ⊗ (hg,iwi)

=

r∑
i=1

si ⊗ hg,σ−1
g (i)wσ−1

g (i).

Hence, we have a KG-isomorphism

IndGH(W ) −→ KG⊗KH W

(w1, . . . , wr) 7−→
r∑
i=1

si ⊗ wi.

Examples 5.0.9.

1. IndGH(KH) ∼= KG.

2. IndGH(K) ∼= K[G/H].

3. Mλ ∼= C[Sn/Sλ] = IndSn
Sλ

(1λ), where 1λ ∼= C is the trivial representa-
tion of Sn.

Take

Φ : H −→ GLn(K)

h 7−→ (Φi,j(h))ni,j=1,

which corresponds to the KH-module W with basis {w1, . . . , wn}. Denote
by ΦG the matrix representation of IndGH(W ). We now describe it with
respect to the basis {si ⊗ wj}i,j . We have

g(si ⊗ wj) = (gsi)⊗ wj
= sσg(i) ⊗ hg,σg(i)wj

= sσg(i) ⊗
n∑
t=1

Φt,j(hg,i)wt

=

n∑
t=1

Φt,j(hg,i)(sσg(i) ⊗ wt)

=
r∑

µ=1

n∑
t=1

δ(s−1
µ gsi)Φt,j(hg,i)(sµ ⊗ wt),

Representation of the Symmetric Groups
34



where

δ(s−1
µ gsi) =

{
1 if σg(i) = µ
0 if σg(i) 6= µ

=

{
1 if s−1

µ gsi ∈ H
0 if s−1

µ gsi 6∈ H.

We have ΦG(g) =
(

Φ′(s−1
j gsi)

)
i,j

, where Φ′(s−1
j gsi) = δ(s−1

j gsi)Φ(s−1
j gsi).

Take now any function Ψ : H −→ C, and denote

Ψ̇ : G −→ C

g 7−→
{

Ψ(g) if g ∈ H
0 if g 6∈ H.

Proposition 5.0.10. Let χG be the character of ΦG. Then

χG(g) =
r∑
i=1

χ̇(s−1
i gsi) =

1

|H|
∑
y∈G

χ̇(y−1gy).

Proof. We have

χG(g) = tr ΦG(g)

=
r∑
i=1

tr Φ′(s−1
i gsi)

=
r∑
i=1

χ̇(s−1
i gsi).

Then

∑
y∈G

χ̇(y−1gy) =
r∑
i=1

∑
h∈H

χ̇(h−1s−1
i gsih)

=

r∑
i=1

|H|χ̇(s−1
i gsi).

Theorem 5.0.11 (Froebenius reciprocity). Let W be a KH-module, and V
be a KG-module. Then

〈χGW , χV 〉G = 〈χW , χV |H 〉H .
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Proof. We have :

〈χGW , χV 〉G =
1

|G|
∑
g∈G

χGW (g)χV (g)

=
1

|G||H|
∑
g,y∈G

χ̇W (y−1gy)χV (g)

=
1

|G||H|
∑
g∈G

χ̇W (g)χV (ygy−1)

=
1

|H|
∑
g∈G

χ̇W (g)χV (g)

=
1

|H|
∑
g∈H

χW (g)χV (g)

= 〈χW , χV |H 〉H .
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Chapter 6

Character of the Specht
modules

Remark 6.0.12. Let µ ` n. We have

pµ =
∑
λ

xλµSλ =
∑
λ

ξλµmλ.

If λ = (λ1, . . . , λk), and µ = (µ1, . . . , µm), then χMλ(µ) is the coefficient of
mλ = Xλ1

1 · · ·X
λk
k is the following polynomial :

m∏
i=1

(Xµi
1 + · · ·+Xµi

k︸ ︷︷ ︸
=pµi

) =
m∏
i=1

pµi = pµ.

So χMλ(µ) = ξλµ.

Remark 6.0.13. We have

Sλ =
∑
µ

1

zµ
xλµpµ,

hλ =
∑
µ

1

zµ
ξλµpµ.

Let Rn be the free abelian group with basis {[Sλ]}λ`n. All the elements
of Rn are uniquely written as

∑
λ

αλ[Sλ] =

[⊕
λ

(Sλ)⊕αλ

]
.

Take R0 = Z, and define

R =
⊕
n≥0

Rn.
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We want this group to be a graded ring. Define

Rn ×Rm −→ Rn+m

([V ], [W ]) 7−→ [Ind
Sn+m
Sn×Sm(V ⊗W )].

This is a well defined product. So R is a commutative graded ring (with
unit). Define

R×R −→ Z
([Sλ], [Sµ]) 7−→ 〈[Sλ], [Sµ]〉 = δλ,µ.

If [V ] =
∑

λ nλ[Sλ], and [W ] =
∑

λmλ[Sλ], then

〈[V ], [W ]〉 =
∑
λ

nλmλ.

However,

〈[V ], [W ]〉 = 〈χV , χW 〉

=
1

n!

∑
σ∈Sn

χV (σ)χW (σ)

=
∑
µ

1

zµ
χV (µ)χW (µ)

=
∑
µ

1

zµ
χV (µ)χW (µ).

Define now

Φ : Λ −→ R

hλ 7−→ [Mλ].

Theorem 6.0.14. The Z-morphism Φ is

1. a homomorphism of rings,

2. an isomorphism,

3. an isometry,

4. such that Φ(Sλ) = [Sλ].

Proof. 1. It is sufficient to show that Φ(hλ) = Φ(hλ1 · · ·hλk) = Φ(hλ1) · · ·Φ(hλk).
We have

Φ(hλi) = [Mλi ] = [1Sλi ].
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So

Φ(hλ1) · · ·Φ(hλk) = [1Sλ1 ] · · · [1Sλk ]

= [IndSn
Sλ

1Sλ ]

= [Mλ].

2. From Young’s rule, we have that [Mλ] = [Sλ] +
∑

µBλKµ,λ[Sµ], and

so, {[Mλ]}λ form a basis of R. So Φ is an isomorphism.

3. Define

Ψ : R −→ ΛQ = Q⊗Z Λ

[Mλ] 7−→
∑
µ

1

zµ
ξλµpµ =

∑
µ

1

zµ
χMλ(µ)pµ.

Because f the evaluation on the basis {[Mλ]}λ, we have that Ψ ◦ Φ is
the inclusion map Λ ↪−→ ΛQ, and si Ψ is an inverse of Φ. Then,

〈Ψ([V ]),Ψ([W ])〉 =
∑
µ,λ

1

zµzλ
χV (µ)χW (λ) 〈pµ, pλ〉︸ ︷︷ ︸

=zµδλ,µ

=
∑
µ

1

zµ
χV (µ)χW (µ)

= 〈[V ], [W ]〉,

and so Φ is isometric, as Ψ is.

4. We know that hλ = Sλ +
∑

µ>λ αµ,λSµ, and that [Mλ] = [Sλ] +∑
µBλKµ,λ[Sµ]. But Φ(hλ) = [Mλ], and so

Φ(Sλ) = [Sλ] +
∑
µBλ

γµ[Sµ].

However,

1 = 〈Sλ, Sλ〉
= 〈Φ(Sλ),Φ(Sλ)〉

= 1 +
∑
µBλ

γ2
µ,

and so γµ = 0.

Corollary 6.0.15. We have χSλ(µ) = xλµ.
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Proof. We have ∑
µ

1

zµ
xλµpµ = Sλ

= Ψ([Sλ])

=
∑
µ

1

zµ
χSλ(µ)pµ.

Corollary 6.0.16. We have

hλ = Sλ +
∑
µBλ

Kµ,λSµ.

Proof. We know that [Mλ] = [Sλ] +
∑

µBλKµ,λ[Sµ]. Apply Ψ to get the
result.

Take λ a partition. Then we already know that

dimSλ = ]{standards tableaux of shape λ}.

We also know that χSλ(µ) = xλµ, where

pµ(X1, . . . , Xk) =
∑
λ

xλµSλ.

Moreover, χSλ(id) = χSλ((1n)) = dimSλ. Let li = λi + k − i. Then xλµ is

the coefficient pf X l in

pµ(X1, . . . , Xk)
∏
i<j

(Xi −Xj)

(see exercise set 10). Recall that pµ = pµ1 · · · pµr , and so

p(1n)(X1, . . . , Xk) = p1(X1, . . . , Xk)
n

= (X1 + · · ·+Xk)
n.

We now take interest in the other part :

∏
i<j

(Xi −Xj) =

∣∣∣∣∣∣∣
1 Xk · · · Xk−1

k
...

...
. . .

...

1 X1 · · · Xk−1
1

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
Xk−1

1 · · · Xk−1
k

...
. . .

...
X1 · · · Xk

1 · · · 1

∣∣∣∣∣∣∣∣∣
=
∑
σ∈Sk

sgn(σ)X
σ(1)−1
k · · ·Xσ(k)−1

1 .
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On the other hand, we have that

(X1 + · · ·Xk)
n =

∑
r1,...,rk

n!

r1! · · · rk!
Xr1

1 · · ·X
rk
k .

So the coefficient of X l in pµ(X1, . . . , Xk)
∏
i<j(Xi −Xj) is

∑
σ

sgn(σ)
n!

(l1 − σ(k) + 1)! · · · (lk − σ(1) + 1)!

=
∑
σ

sgn(σ)
n!∏k

j=1(lj − σ(k − j + 1) + 1)!
σ st. lj − σ(k − j + 1) + 1 ≥ 0

=
n!

l1! · · · lk!
∑
σ∈Sk

sgn(σ)
k∏
j=1

lj(lj − 1) · · · (lj − σ(k − j + 1) + 2)

=
n!

l1! · · · lk!

∣∣∣∣∣∣∣∣∣
1 lk lk(lk − 1) · · ·
1 lk−1 lk−1(lk−1 − 1) · · ·
...

...
...

. . .

1 l1 l1(l1 − 1) · · ·

∣∣∣∣∣∣∣∣∣
=

n!

l1! · · · lk!

∣∣∣∣∣∣∣
1 lk l2k · · · lk−1

k
...

...
...

. . .
...

1 l1 l21 · · · lk−1
1

∣∣∣∣∣∣∣
=

n!

l1! · · · lk!
∏
i<j

(li − lj) Vandermonde det.

So finally :

dimSλ =
n!

l1! · · · lk!
∏
i<j

(li − lj).

6.1 The hook formula

We start by assigning coordinates to the boxes in a Young diagram. For
instance, if λ = (3, 3, 2, 1) ` 9, then we have

[λ] =

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2)

(4, 1)
.
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The hook length if the (i, j)-th box is the number of boxes that appear right,
down, or on the box (i, j). For instance, in the previous diagram, the hook
length of (1, 2) is h(1, 2) = 4 :

(1, 2)

.

Theorem 6.1.1 (Hook formula). Let λ = (λ1, . . . , λk) ` n be a partition.
Then

dimSλ =
n!∏

i,j h(i, j)
.

Proof. By induction on k, the number of rows in [λ].

• If k = 1, then λ = (n), and we already know that

dimS(n) = 1 =
n!

n!
.

• We know that

dimSλ =
n!

l1! · · · lk!
∏
i<j

(li − lj)

=
(n− λ1)!

l2! · · · lk!

 ∏
2≤i<j≤k

(li − lj)

 (n− λ1 + 1) · · ·n
l1!

∏
1<j≤k

(l1 − lj)

=
(n− λ1)!∏
i≥2, j h(i, j)

(n− λ1 + 1) · · ·n
∏

1<j≤k

l1 − lj
l1!

=
n!∏

i≥2, j h(i, j)

∏
1<j≤k

l1 − lj
l1!

.

It remains to prove that the product of the hook lengths of the first
row is

l1!

(l1 − lk) · · · (l1 − l2)
.

Recall that li = λi + k − i. We have that

– h(1, 1) = λ1 + k − 1 = l1,
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– h(1, 2) = l1 − 1,

– ...

– h(1, λk) = l1 − λk + 1,

– h(1, λk + 1) = l1 − λk − 1, provided that λk−1 > λk,

– ...

We conclude by this observation.

Example 6.1.2.

dimS(2,1) =
3!

3× 1× 1
= 2.

Let λ = (λ1, . . . , λk) be a partition. We say that the box (i, j) is an inner
corner of λ if, when we remove it from [λ], we obtain the Yound diagram of
another partition. For instance :

.

We denote by λ− the set of partitions that are obtained by removing an
inner corner of λ. Conversely, we say that a position (i, j) 6∈ [λ] is an outer
corner of λ if, when we add it to [λ], we obtain the diagram of another
partition. For instance :

.

We denote by λ+ the set of partitons that are obtained by adding an outer
corner of λ.

Lemma 6.1.3. Let fλ = dimSλ. Then fλ =
∑

µ∈λ− f
µ.

Proof. Let T be a standard tableau of shape λ ` n. Necessarily, n appears in
an inner corner of T , and we obtain another standard tableau by removing
it.

Theorem 6.1.4 (Branson rule). Take λ ` n. Then

ResSnSn−1
(Sλ) =

⊕
µ∈λ−

Sµ,

Ind
Sn+1

Sn
(Sλ) =

⊕
µ∈λ+

Sµ.
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Proof. Let λ ` n, and r1 < · · · < rk the indexes of the rows of λ that contain
an inner corner.

• We’ll note by λi the partition obtained by removing the inner corner
at row ri. Remark that a row can’t bear more that one inner corner.

• If T is any tableau of shape λ, and n appears in the inner corner at
row ri, then we’ll denote by T i the tableau obtained by removing the
box containing n.

• Let {T} be a tabloid with the property that n appears in a row con-
taining an inner corner. We’ll denote by {T i} the tabloid obtained by
removing n.

Let G be a finite group, and V a CG-module. Let 0 6= W ⊆ V be a
submodule. Then V ∼= W ⊕ V/W . Take a sequence

0 = V0 ⊆ · · · ⊆ Vk = Sλ

of CSn−1-modules with the property that Vi/Vi−1
∼= Sλ

i
as CSn−1-modules.

Then we are done. Denote by V i the C-vector space spanned by all the
standard polytabloids eT , where n appears in a row between r1 and ri. It is
clear that V0 = 0, Vi ⊆ Vi+1, and Vk = Sλ. Define

Θi : Mλ −→Mλi

{T} 7−→
{
{T i} if n appears in the row ri
0 otherwise.

It is a CSn−1-homomorphism, as “n never moves”. Take T a standard
tableau. We have

Θi(eT ) =

{
eT i if n appears in row ri
0 if n appears in row rj < ri.

Hence Θi(Vi) = 〈eT i | T i standard of shape λi〉 = Sλ
i
, and Vi−1 ⊆ ker Θi.

So
0 = V0 ⊆ V1 ∩ ker Θ1 ⊆ V1 ⊆ · · · ⊆ Vk = Sλ,

and dimVi/(Vi ∩ ker Θi) =∼ Sλi . On the other hand,
∑

dimSλ
i

=
∑
fλ

i
=

fλ, and so Vi = Vi+1 ∩Θi+1, and Vi/(Vi ∩ ker Θi) = Vi/Vi−1 = Sλ
i
.
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