Quasi categories

Cédric Ho Thanh

Supervised by D. Zaganidis

Spring 2014

Contents

1 Categorical prerequisites 1
1.1 Generators and relations 1
1.2 Enriched categories 3
1.3 Double categories 5
2 Simplicial sets 9
2.1 Definitions 9
2.2 Standard n-simplex 11
2.2.1 Definition 11
2.2.2 \quad Simplicial subsets of $\Delta[n]$ 13
3 Homotopical category 15
3.1 Nerve of a category 15
3.2 Homotopicial category 16
4 Quasi-categories 21
4.1 Definition 21
4.2 A new look at the adjunction $h \vdash N$ 21
4.3 The 2-category of quasi-categories 24
5 Adjunctions 29
5.1 Definition 29
5.2 Absolute right lifting 32
6 Limits 35

Chapter 1

Categorical prerequisites

In this whole project, the term "category" will be used to denote small categories, that is, categories with a set of objects (rather that a class), and a set of morphisms between any two objects.

1.1 Generators and relations

Free categories. Let $G=(V, E, s, t)$ be an oriented multigraph, with V the set of its vertices, E the set of its edges, s,t:E $\longrightarrow V$ the source and target maps respectively. The free category $\mathscr{F} G$ generated by G is defined as follow :

$$
\begin{aligned}
\operatorname{ob} \mathscr{F} G & =V, \\
\operatorname{hom} \mathscr{F} G & =\left\{w_{1} \cdots w_{n} \in E^{<\omega} \mid t\left(w_{i}\right)=s\left(w_{i+1}\right), \forall 1 \leq i<n\right\},
\end{aligned}
$$

where compositions of morphisms are given by concatenation of words, and $\forall A \in$ ob \mathscr{F}, the identity morphism 1 is the empty word.

If $m: G \longrightarrow G^{\prime}$ is a graph homomorphism, then we can define a functor

$$
\begin{aligned}
& \mathscr{F} m: \mathscr{F} G \longrightarrow \mathscr{F} G^{\prime} \\
& v \longmapsto m(v) \\
& w_{1} \cdots w_{n} \longmapsto m\left(w_{1}\right) \cdots m\left(w_{n}\right) \quad \forall v o b \mathscr{F} G, \\
& \forall w_{1} \cdots w_{n} \in \operatorname{hom} \mathscr{F} G,
\end{aligned}
$$

which can easily be proven well defined. Thereby, $\mathscr{F}: \mathscr{G r a p h} \longrightarrow \mathscr{C a t}$ is a functor, and as expected from the denomination "free", it is left adjoint to the forgetful
functor $U: \mathscr{C a t} \longrightarrow \mathscr{G r a p h}$. In particular, we have a unique lifting property that reads as follow :

where i is the obvious inclusion of multigraphs, and \mathscr{C} any category.

Quotient categories. Let \mathscr{C} be a category. A congruence relation \simeq on \mathscr{C} consists in an equivalence relation $\simeq_{A, B}$ on $[A, B]_{\mathscr{C}}, \forall A, B \in \mathrm{ob} \mathscr{C}$, that is compatible with composition, i.e. $\forall f, f^{\prime}: A \longrightarrow B, \forall g, g^{\prime}: B \longrightarrow C$, we have

$$
\left\{\begin{array}{l}
f \simeq_{A, B} f^{\prime} \Longrightarrow g f \simeq_{A, C} g f^{\prime}, \\
g \simeq_{B, C} g^{\prime} \Longrightarrow g f \simeq_{A, C} g^{\prime} f .
\end{array}\right.
$$

The quotient category \mathscr{C} / \simeq is defined by

$$
\begin{aligned}
\mathrm{ob}(\mathscr{C} / \simeq) & =\operatorname{ob} \mathscr{C}, \\
{[A, B]_{\mathscr{C}} / \simeq } & =[A, B]_{\mathscr{C}} / \simeq_{A, B} \quad \forall A, B \in \operatorname{ob} \mathscr{C} .
\end{aligned}
$$

Quotient categories enjoy the following universal propery :
Theorem 1.1.1. Let \mathscr{C} be a category, $\simeq a$ congruence relation on \mathscr{C}, and F : $\mathscr{C} \longrightarrow \mathscr{D}$ be a functor such that $F f=F g$, for all parallel arrows $f \simeq g$ in \mathscr{C}. Then $\exists!\tilde{F}: \mathscr{C} / \simeq \longrightarrow \mathscr{D}$ such that the following diagram commutes :

where π is the obvious projection functor.
Every category \mathscr{C} is the quotient of a free category by an appropriate congruence relation, which is called a definition by generator and relations of \mathscr{C}. Indeed, $\mathscr{C}=(\operatorname{ob} \mathscr{C}, \operatorname{hom} \mathscr{C}$, dom, codom $)$ can be seen as an oriented graph, from wich we build the free category $\mathscr{F} \mathscr{C}$. We define now a congruence relation \simeq on $\mathscr{F} \mathscr{C}$ as follow : $\forall A, B \in \operatorname{ob} \mathscr{F} \mathscr{C}, \forall v_{1} \cdots v_{m}, w_{1} \cdots w_{n} \in[A, B]_{\mathscr{F} \mathscr{C}}$,

$$
v_{1} \cdots v_{m} \simeq_{A, B} w_{1} \cdots w_{n} \Longleftrightarrow v_{1} \circ \cdots \circ v_{m}=w_{1} \circ \cdots \circ w_{n} .
$$

Using the previous theorem, it is then clear that $\mathscr{C}=\mathscr{F} \mathscr{C} / \simeq$.

1.2 Enriched categories

Monoidal categories. A monoidal category \mathscr{M} is a classical category endowed with a functor $\otimes: \mathscr{M} \times \mathscr{M} \longrightarrow \mathscr{M}$, the tensor product, such that :

1. \otimes is associative up to natural isomorphims, i.e. there exists a natural isomorphism $\alpha:(-1 \otimes-2) \otimes-3 \xrightarrow{\cong}-1 \otimes(-2 \otimes-3)$ such that $\forall A, B, C, D \in \mathrm{ob} \mathscr{M}$, the following diagram commutes :
2. \otimes admits an objet $I \in \mathrm{ob} \mathscr{M}$ as a left and right neutral element up to some natural isomorphisms, i.e. there exists natural isomorphisms $\rho:-\otimes I \xrightarrow{\cong} 1$, $\lambda: I \otimes-\stackrel{\cong}{\cong} 1$, such that $\forall A, B \in \mathrm{ob} \mathscr{M}$, the following diagram commutes :

The category \mathscr{M} is said symmetric if there is a natural isomorphism $\tau:-{ }_{1} \otimes-2 \xrightarrow{\cong}$ $-2 \otimes-{ }_{1}$. It is strictly monoidal if the natural isomorphisms α, ρ and λ are equalities. It is strictly symmectric monoidal if it is symmetric, and τ is the equality.

The actual definition. An enriched category \mathscr{E} over \mathscr{M}, or \mathscr{M}-category, consists in

1. a set ob \mathscr{E} of objects,
2. $\forall A, B \in \mathrm{ob} \mathscr{E}$, an object $[A, B]_{\mathscr{E}} \in \mathrm{ob} \mathscr{M}$,
3. $\forall A, B, C \in \mathrm{ob} \mathscr{E}$, a morphism $\circ=o_{A, B, C}:[B, C]_{\mathscr{E}} \otimes[A, B]_{\mathscr{E}} \longrightarrow[A, C]_{\mathscr{E}}$ that is
associative up to α, i.e. $\forall D \in \mathrm{ob} \mathscr{E}$, the following diagram commutes :

4. $\forall A \in \mathrm{ob} \mathscr{E}$, a morphism $1: I \longrightarrow[A, A]_{\mathscr{E}}$ such that $\forall B \in \mathrm{ob} \mathscr{E}$, the following diagrams commute :

Let \mathscr{E}^{\prime} be another \mathscr{M}-category. An enriched functor, or \mathscr{M}-functor, $F: \mathscr{E} \longrightarrow$ \mathscr{E}^{\prime}, consists in

1. a map $F_{0}: \mathrm{ob} \mathscr{E} \longrightarrow \mathrm{ob} \mathscr{E}^{\prime}$, and we'll denote by $F A=F_{0}(A)$, if $A \in \mathrm{ob} \mathscr{E}$,
2. $\forall A, B \in \operatorname{ob} \mathscr{E}$, a morphism $F=F_{A, B}:[A, B]_{\mathscr{E}} \longrightarrow[F A, F B]_{\mathscr{E}^{\prime}}$ in \mathscr{M}, that is compatible with compositions and identities, i.e. such that $\forall C \in \mathrm{ob} \mathscr{E}$, the following diagrams commute :

Enriched approach to n-categories. Define a 0 -category to be a set, a 0 -functor to be a set map, and denote $\mathscr{C} a t_{0}=\mathscr{S}$ et the category of all 0 -categories. Endowing it with the cartesian product makes it into a strictly symmetric monoidal category, where the neutral element is the singleton $\star_{0}=\{*\}$.

Assume now that \mathscr{C} at t_{n} is strictly symmetric monoidal, with tensor product \times_{n} and neutral element \star_{n}, and define a $(n+1)$-category to be a category enriched over $\mathscr{C a t} t_{n}$. Define $\mathscr{C} a t_{n+1}$ to be the category of all such categories and enriched functors. Consider the obvious product $\times_{n+1}: \mathscr{C} a t_{n+1} \times \mathscr{C} a t_{n+1} \longmapsto \mathscr{C} a t_{n+1}$, and the $(n+1)$-category \star_{n+1} such that $\mathrm{ob} \star_{n+1}=\{*\}$, and $[*, *]_{\star_{n+1}}=\star_{n}$. The latter is clearly a left and right neutral element for \times_{n+1}, and thus $\mathscr{C} a t_{n+1}$ can be made into a strict symmetric monoidal category.

From there, we define by induction the category $\mathscr{C a t}_{n}$ of n-categories, $\forall n \in \mathbb{N}$. For convenience, we will loose the indices under \times and \star.

1.3 Double categories

A double category \mathscr{D} consists in a horizontal category $H \mathscr{D}$ and a vertical category $V \mathscr{D}$ endowed with functors

where $H \mathscr{D} \times_{V \mathscr{D}} H \mathscr{D}$ is the following pullback :

We define

- the objects of \mathscr{D} as being the objects of $V \mathscr{D}$,
- the horizontal morphisms of \mathscr{D} as being the objects of $H \mathscr{D}$,
- the vertical morphisms of \mathscr{D} as being the morphisms of $V \mathscr{D}$,
- the squares of \mathscr{D} as being the morphisms of $H \mathscr{D}$, which we'll represent by

where f and g are horizontal arrows, $\alpha: f \longrightarrow g$, and $j=d(\alpha), k=c(\alpha)$ are vertical arrows.

We define horizontal and vertical (associative) composition of squares as follows :

where $(x y)=y \diamond x$, and $\binom{x}{y}=y x$ is the composition of morphisms in $H \mathscr{D}$ or $V \mathscr{D}$, depending on the context. Those laws admit the following horizontal and vertical squares as neutral elements (or identity squares) :

Finaly, if

then the following interchange law holds : $\left(\binom{\alpha}{\gamma}\binom{\beta}{\delta}\right)=\binom{(\alpha \beta)}{(\gamma \delta)}$ and we write $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$.

If \mathscr{D} and \mathscr{E} are two double categories, then a double functor $F: \mathscr{D} \longrightarrow \mathscr{E}$ consists in two functors $H F: H \mathscr{D} \longrightarrow H \mathscr{E}$ and $V F: V \mathscr{D} \longrightarrow V \mathscr{E}$ that are compatible with all compositions.

Chapter 2

Simplicial sets

In this chapter, we introduce the notion of simplicial set, from which we'll define quasi-categories later. We also provide with important examples.

2.1 Definitions

Simplicial category. If $n \in \mathbb{N}$, denote by $[n]$ the standard total ordered $(n+1)$ element set $\{0, \ldots, n\}$, and define the simplicial category Δ, the small category of all such sets, and (weakly) increasing maps between them. Some particular maps require attention :

- the face maps $d^{i}:[n] \longrightarrow[n+1]$, where $0 \leq i \leq n+1$ is the unique injective map such that $i \notin \operatorname{im} d^{i}$, i.e.

$$
d^{i}(0 \rightarrow 1 \rightarrow \cdots \rightarrow n)=0 \rightarrow \cdots i-1 \rightarrow i+1 \cdots \rightarrow n+1
$$

- the degeneracy maps ${ }^{i}:[n] \longrightarrow[n-1]$, where $n>0$, and $0 \leq i \leq n-1$, is the unique surjective map such that i is the image of two disctinct elements of $[n+1]$,

$$
s^{i}(0 \rightarrow 1 \rightarrow \cdots \rightarrow n)=0 \rightarrow \cdots i \rightarrow i \cdots \rightarrow n-1
$$

The following so-called cosimplicial identities give a description of the category Δ in terms of generator and relations :

$$
\begin{cases}d^{j} d^{i}=d^{i} d^{j-1} & \text { if } i<j \\ s^{j} d^{i}=d^{i} s^{j-1} & \text { if } i<j \\ s^{j} d^{j}=s^{j} d^{j+1}=1 & \\ s^{j} d^{i}=d^{i-1} s^{j} & \text { if } i>j+1 \\ s^{j} s^{i}=s^{i} s^{j+1} & \text { if } i \leq j\end{cases}
$$

Simplicial and cosimplicial objects. Let \mathscr{C} be a category. A simplicial object X in \mathscr{C} is a functor $X: \Delta^{\mathrm{op}} \longrightarrow \mathscr{C}$, and we denote by $s \mathscr{C}$ the category of simplicial \mathscr{C}-objects, and natural transformations between them.

We note $X_{n}=X[n]$, and if $\alpha:[n] \longrightarrow[m]$ in $\triangle, X_{\alpha}=X \alpha: X_{m} \longrightarrow X_{n}$. We also allow the following notations : $d_{i}=X d^{i}: X_{n+1} \longrightarrow X_{n}$, and $s_{i}=X s^{i}: X_{n} \longrightarrow X_{n+1}$. Here are some diagrams :

- in \triangle :

- in \mathscr{C} :

A cosimplicial \mathscr{C}-object Y is a functor $Y: \triangle \longrightarrow \mathscr{C}$, and we denote by $c \mathscr{C}$ the category of cosimplicial \mathscr{C}-objects, and natural transformations between them. We allow similar abuses of notation used with simplicial objects.

The actual definition. Without surprise, a simplicial set X is a simplicial \mathscr{S} etobject, that is, a functor $X: \Delta^{\mathrm{op}} \longrightarrow \mathscr{S}$ et. A n-simplex of X is an element of X_{n}. A simplicial subset of X is a simplicial set $Y \in \operatorname{ob} s \mathscr{S}$ et such that $\forall n \in \mathbb{N}, Y_{n} \subseteq X_{n}$, and such that the inclusion maps define a natural transformation $X \longrightarrow Y$, i.e. a map in $s \mathscr{S}$ et.

The 1 -dimensional face maps $d_{0}, d_{1}: X_{1} \longrightarrow X_{0}$ induce an oriented multigraph which we'll note by $\left.X\right|_{2}$.

2.2 Standard n-simplex

2.2.1 Definition

The standard n-simplex is the simplicial set $\Delta[n]=[-,[n]]_{\triangle}=\mathrm{y}[n]$, where y is the Yoneda embedding ${ }^{1}$. Remark that the Yoneda lemma implies that for all simplicial set $X \in \operatorname{obs} \operatorname{S}$ et, the following (set) map is an isomorphism

$$
\begin{aligned}
{[\Delta[n], X]_{\text {s. Set }} } & \longrightarrow X_{n} \\
\phi & \longmapsto \phi_{n}\left(1_{[n]}\right) .
\end{aligned}
$$

Let $0 \leq a_{0} \leq \ldots \leq a_{k} \leq n$, and define

$$
\begin{aligned}
{\left[\left[a_{0}, \ldots, a_{k}\right]\right]:[k] } & \longrightarrow[n] \\
k & \longmapsto a_{k},
\end{aligned}
$$

i.e. the unique application $[k] \longrightarrow[n], k \longmapsto a_{k}$. For instance, take $n=2$. Then

- $\Delta[2]_{0}=[[0],[2]]_{\triangle}$ can be imagined as :

[0]]

- $\Delta[2]_{1}=[[1],[2]]_{\triangle}$ can be imagined as :

[^0]here, we ignored degenerate maps, i.e. non injective, as they can be imagined as lines with the same ends, for instance $[[0,0]]=s_{0}([[0]])$ is identified with [[0] ;

- $\Delta[2]_{2}=[[2],[2]]_{\triangle}$ can be imagined as :

- if $m \geq 3, \Delta[2]_{m}$ consist only in degenerate maps, and may be imagined as a m-dimentional tetrahedron squashed by its vertices into a 2-dimentional tetrahedron (a triangle) ;
- here is an example of face map :

$$
\begin{aligned}
d_{0}: \Delta[2]_{2} & \longrightarrow \Delta[2]_{1} \\
\quad[a, b, c] & \longmapsto[b, c],
\end{aligned}
$$

and so

more generaly, if $m \geq 1,0 \leq i \leq m+1$, then

$$
\begin{aligned}
d_{i}: \Delta[n]_{m} & \longrightarrow \Delta[n]_{m-1} \\
{\left[\left[a_{0}, \ldots, a_{m}\right]\right] } & \longmapsto\left[\left[a_{0}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{m}\right]\right]
\end{aligned}
$$

- here is an example of degeneracy map :

$$
\begin{aligned}
s_{1}: \Delta[2]_{1} & \longrightarrow \Delta[2]_{2} \\
\quad[a, b] & \longmapsto[a, b, b]],
\end{aligned}
$$

and so for instance, $[[1,2]]$ is mapped to the degenerate ${ }^{2} 2$-simplex $[[1,1,2]$

[^1]and more generaly, if $m \geq 0,0 \leq i \leq m$, then
\[

$$
\begin{aligned}
s_{i}: \Delta[n]_{m} & \longrightarrow \Delta[n]_{m+1} \\
{\left[a_{0}, \ldots, a_{m} \rrbracket\right.} & \longmapsto \llbracket a_{0}, \ldots, a_{i}, a_{i}, a_{i+1}, \ldots, a_{m} \rrbracket .
\end{aligned}
$$
\]

2.2.2 Simplicial subsets of $\Delta[n]$

Boudaries. Let $n \geq 1$. Then the boundary of $\Delta[n]$ is the smallest simplicial set $\partial \Delta[n] \in$ obs \mathscr{S} et such that $\left\{d_{i}([0, \ldots, n])=d_{i}\left(1_{[n]}\right) \mid 0 \leq i \leq n\right\} \subseteq \partial \Delta[n]_{n-1}$. In other words :

$$
\partial \Delta[n]_{j}= \begin{cases}\Delta[n]_{j} & \text { if } j<n, \\ \text { it. degens. of elems. of } \Delta[n]_{k}, \forall 0 \leq k \leq n-1 & \text { if } j \geq n .\end{cases}
$$

More precisely, "iterated degeneracies of elements of $\Delta[n]_{k}, \forall 0 \leq k \leq n-1$ " stands for the set

$$
\partial \Delta[n]_{j}=\bigcup_{k=0}^{n-1}\left\{s_{i_{j-n+1}} \cdots s_{i_{0}}(x) \mid x \in \Delta[n]_{k}, 0 \leq i_{l} \leq l+1\right\} .
$$

Here is a little intuition : we start at level $(n-1)$ (i.e. at $\left.\Delta[n]_{n-1}\right)$ with the faces of the only non degenerate n-simplex $1_{[n]}=[0, \ldots, n] \in \Delta[n]_{n}$, i.e. $(n-1)$-simplices of the form $\llbracket[0, \ldots, \hat{i}, \ldots, n \rrbracket$. From that, we generate the smallest simplicial set possible, that is $\partial \Delta[n]$. In a first time, we go down, applying face maps repetedly. We then go up back to $\partial \Delta[n]_{n-1}$ applying degeneracies repededly, and from here, we can already notice that the levels lower than, and at $(n-1)$ of $\Delta[n]$ and $\partial \Delta[n]$ are equal. We then go up to infinity from $\partial \Delta[n]_{n-1}$, applying degeneracies repetedly. One might wonder what would happen if we decided to do down, back to level ($n-1$) again, applying face maps. Nothing actually, as face maps are inverse to some degeneracy map, that has been used previously. So we add no more simplex by going down from above level $(n-1)$, and we finish the job by endlessly going up.

One can find the following explicit definition :

$$
\partial \Delta[n]_{j}=\left\{f:[j] \longrightarrow[n] \mid \exists g:[j] \longrightarrow[n-1], \exists 0 \leq i \leq n, f=d^{i} g\right\} .
$$

Horns. Another important simplicial subset of $\Delta[n]$ is the k-th horn $\Lambda^{k}[n]$, where $0 \leq k \leq n+1$, which is generated exactly as $\partial \Delta[n]$, except that $\Lambda^{k}[n]_{n-1}$ doesn't
contain $d_{k}\left(1_{[n]}\right)=[[0, \ldots, \hat{k}, \ldots, n]]$. For instance, $\Lambda^{0}[2]_{1}$ can be seen as

[1]]
[2]]

A horn $\Lambda^{k}[n]$ is said inner if $0<k<n$. In a similar fashion as with $\partial \Delta[n]$, we obtain the following explicit definition :

$$
\Lambda^{k}[n]_{j}=\left\{f:[j] \longrightarrow[n] \mid \exists g:[j] \longrightarrow[n-1], \exists 0 \leq i \leq n, i \neq k, f=d^{i} g\right\}
$$

Chapter 3

Homotopical category

This chapter is about the adjunction $h \dashv N$ between the homocopical category functor and the nerve functor, which provides a link between simplicial sets and categories.

3.1 Nerve of a category

We can see every object $[n] \in \mathrm{ob} \triangle$ as a (small) category, whose morphisms and composition are induced by the natural ordering, and consider the face maps and degeneracies as functors (recall that they are incresing maps). This gives rise to a subcategory of \mathscr{C} at that is isomorphic to Δ. Let $\mathscr{C} \in$ ob \mathscr{C} at, and define its nerve as the simplicial set $N \mathscr{C}=\left.[-, \mathscr{C}]_{\mathscr{C} \text { at }}\right|_{\triangle}: \Delta^{\mathrm{op}} \longrightarrow \mathscr{S}$ et. In other words, a n-simplex of $N \mathscr{C}$ is a chain of composable arrows

$$
x=C_{0} \xrightarrow{\alpha_{1}} C_{1} \xrightarrow{\alpha_{2}} \cdots \xrightarrow{\alpha_{n}} C_{n} .
$$

If $0 \leq i \leq n$, the i-th face $d_{i}(x) \in N \mathscr{C}_{n-1}$ of x is defined by:

$$
d_{i}(x)= \begin{cases}C_{1} \xrightarrow{\alpha_{2}} \cdots \xrightarrow{\alpha_{n}} C_{n} & \text { if } i=0, \\ C_{0} \xrightarrow{\alpha_{1}} \cdots C_{i-1} \xrightarrow{\alpha_{i+1} \alpha_{i}} C_{i+1} \cdots \xrightarrow{\alpha_{n}} C_{n} & \text { if } 1 \leq i \leq n-1, \\ C_{0} \xrightarrow{\alpha_{1}} C_{1} \xrightarrow{\alpha_{2}} \cdots \xrightarrow{\alpha_{n-1}} C_{n-1} & \text { if } i=n .\end{cases}
$$

and if $0 \leq i \leq n+1$, the i-th degeneracy $s_{i}(x) \in N \mathscr{C}_{n+1}$ of x is :

$$
s_{i}(x)=C_{0} \xrightarrow{\alpha_{1}} \cdots C_{i} \xrightarrow{1} C_{i} \cdots \xrightarrow{\alpha_{n}} C_{n} .
$$

Remark that in particular, $N \mathscr{C}_{0}=\operatorname{ob} \mathscr{C}$, and $N \mathscr{C}_{1}=\operatorname{hom} \mathscr{C}$.
If $F: \mathscr{C} \longrightarrow \mathscr{D}$ is a functor, we can define maps $N F_{n}: N \mathscr{C}_{n} \longrightarrow N \mathscr{D}_{n}$ by

$$
N F_{n}\left(C_{0} \xrightarrow{\alpha_{1}} C_{1} \xrightarrow{\alpha_{2}} \cdots \xrightarrow{\alpha_{n}} C_{n}\right)=F C_{0} \xrightarrow{F \alpha_{1}} F C_{1} \xrightarrow{F \alpha_{2}} \cdots \xrightarrow{F \alpha_{n}} F C_{n} .
$$

Moreover, those maps are compatible with the face maps and the degeneracy maps, and therefore, we have a simplicial map $N F: N \mathscr{C} \longrightarrow N \mathscr{D}$, and a functor N : \mathscr{C} at $\longrightarrow s \mathscr{S}$ et, called the nerve functor.

3.2 Homotopicial category

The nerve functor $N: \mathscr{C}$ at $\longrightarrow \mathscr{S}$ et admits a left adjoint $h: s \mathscr{S}$ et $\longrightarrow \mathscr{C}$ at which we define now. Take $X \in \operatorname{obs} \mathscr{S}$ et a simplicial set, and consider the free category $\mathscr{F}=\mathscr{F}\left(\left.X\right|_{2}\right)$. If $A, B \in \mathrm{ob} \mathscr{F}$, we define a relation on $[A, B]_{\mathscr{F}}$ as follow : $\forall b a, c$: $A \longrightarrow B$ (where $A \xrightarrow{a} C \xrightarrow{b} B$ for some object C), $b a \sim c$ if and only if there exists a 2-simplex $\alpha \in X_{2}$ of the form

Let \simeq be the congruence relation on \mathscr{F} generated by \sim, and define $h X=\mathscr{F} / \simeq$, the homotopical category of X. If $f: X \longrightarrow Y$ is a simplicial map, then define the functor $h f: h X \longrightarrow h Y$ to be

$$
\begin{aligned}
(h f)_{\mathrm{ob}}=f_{0}: \mathrm{ob} h X=X_{0} & \longrightarrow \mathrm{ob} h Y=Y_{0} \\
(h f)_{\mathrm{hom}}: \operatorname{hom} h X & \longrightarrow \operatorname{hom} h Y \\
{[x]_{\simeq, X} } & \longmapsto\left[f_{1}(x)\right]_{\simeq, Y} .
\end{aligned}
$$

The second map is well defined. Indeed, $f: X \longrightarrow Y$ is a simplicial map, and so 2-simplices are mapped as follow :

In particular, $b a \sim c \Longrightarrow f_{1}(b) f_{1}(a) \sim f_{1}(c), \forall a, b, c \in X_{1}$, and so $f_{1}: X_{1} \longrightarrow Y_{1}$ is compatible with \sim, and therefore with the congruence relation \simeq. Hence, we have a well defined functor $h f: h X \longrightarrow h Y$.

Lemma 3.2.1. Let $X \in \operatorname{obs} \mathscr{S}$ et be a simplicial set, $\mathscr{C} \in \mathrm{ob} \mathscr{C}$ at be a category, and $f: X \longrightarrow N \mathscr{C}$. Then $\forall n \in \mathbb{N}^{*}, f$ is uniquely determined by $f_{n}: X_{n} \longrightarrow N \mathscr{C}_{n}$.

Proof. - We first show that f is uniquely determined by f_{1}. Remark that $f_{0}(x)=d_{0} f_{1} s_{0}(x)$, and so f_{0} is uniquely determined. Next, remark that if $x \in X_{k}$, then

$$
f_{k}(x)=\left(C_{0} \xrightarrow{\alpha_{1}} C_{1} \xrightarrow{\alpha_{2}} \cdots \xrightarrow{\alpha_{k}} C_{k}\right)
$$

where, letting $y_{i}=d_{0}^{i-1} d_{i+1} \cdots d_{k}(x)$,

$$
\left\{\begin{array}{l}
\alpha_{i}=f_{1}\left(y_{i}\right), \quad 1 \leq i \leq k \\
C_{0}=d_{1}\left(y_{1}\right) \\
C_{i}=d_{0}\left(y_{i}\right) \quad 0<i \leq k
\end{array}\right.
$$

Intuitively, applying $d_{i+1} \cdots d_{k}$ and d_{0}^{i-1} on $x \in X_{k}$ "crops" the last $n-i$ and first $i-11$-simplices, so that only the i-th remains. The C_{i} s are obtained symply by applying one more face map (domain or codomain) on the $y_{i} \mathrm{~s}$. Setting $y_{i}=d_{0} \cdots d_{i-2} d_{i+1} \cdots d_{k}=d_{0} \cdots \hat{d}_{i-1} \hat{d}_{i} \cdots d_{k}(x)$ is also correct, and crops from right to left, sparing the i-th simplex.

- Using the same "cropping" argument, we can recover f_{1} starting from f_{n}, for any $n \geq 1$.

Lemma 3.2.2. Let X and \mathscr{C} be as before. Then any graph map $\left(f_{1}, f_{0}\right):\left.X\right|_{2} \longrightarrow$ $\left.N \mathscr{C}\right|_{2}$ such that $\forall x \in X_{2}, f_{1} d_{1}(x)=\left(f_{1} d_{0}(x)\right)\left(f_{1} d_{2}(x)\right)$, induce a uniquely determined simplicial map $f: X \longrightarrow N \mathscr{C}$.

Proof. For $n \in \mathbb{N}$, define f_{n} as before. To check that those maps induce a natural transformation $f: X \longrightarrow N \mathscr{C}$, it is sufficent to see that it preserves the face maps and the degeneracies.

- Face maps. Let $n \geq 2$. It is clear that f_{n} and f_{n-1} are compatible with d_{0} and d_{n+1}. Let $1 \leq i \leq n$, and $\beta \in X_{n}$ be such that $d_{0}^{i-1} d_{i+1} \cdots d_{n}(\beta)=\alpha_{i}$. On the one hand we have

$$
\begin{aligned}
& f_{n-1} d_{i}(\beta) \\
= & \left(f_{0}\left(C_{0}\right) \xrightarrow{f_{1}\left(\alpha_{1}\right)} \cdots f_{0}\left(C_{i-1}\right) \xrightarrow{f_{1}\left(\alpha^{\prime}\right)} f_{0}\left(C_{i+1}\right) \cdots \xrightarrow{f_{1}\left(\alpha_{n}\right)} f_{0}\left(C_{n}\right)\right),
\end{aligned}
$$

and on the other hand we have

$$
\begin{aligned}
& d_{i} f_{n}(\beta) \\
= & d_{i}\left(f_{0}\left(C_{0}\right) \xrightarrow{f_{1}\left(\alpha_{1}\right)} \ldots \xrightarrow{f_{1}\left(\alpha_{n}\right)} f_{0}\left(C_{n}\right)\right) \\
= & \left(f_{0}\left(C_{0}\right) \xrightarrow{f_{1}\left(\alpha_{1}\right)} \cdots f_{0}\left(C_{i-1}\right) \xrightarrow{f_{1}\left(\alpha_{i}\right) f_{1}\left(\alpha_{i-1}\right)} f_{0}\left(C_{i+1}\right) \cdots \xrightarrow{f_{1}\left(\alpha_{n}\right)} f_{0}\left(C_{n}\right)\right) .
\end{aligned}
$$

Remark that $\gamma=d_{0}^{i-1} d_{i+2} \cdots d_{n} \beta \in X_{2}$ is as follow :

and by assuptions, $f_{1}\left(\alpha^{\prime}\right)=f_{1}\left(\alpha_{i+1}\right) f_{1}\left(\alpha_{i}\right)$.

- Degeneracies. Let $n \geq 2,0 \leq i \leq n$, and $\beta \in X_{n}$ be as before. Then

$$
\begin{aligned}
& f_{n+1} s_{i}(\boldsymbol{\beta}) \\
= & \left(f_{0}\left(C_{0}\right) \xrightarrow{f_{1}\left(\alpha_{1}\right)} \cdots f_{0}\left(C_{i}\right) \xrightarrow{f_{0}\left(s_{0} C_{i}\right)} f_{0}\left(C_{i}\right) \cdots \xrightarrow{f_{1}\left(\alpha_{n}\right)} f_{0}\left(C_{n}\right)\right) \\
= & \left(f_{0}\left(C_{0}\right) \xrightarrow{f_{i}\left(\alpha_{1}\right)} \cdots f_{0}\left(C_{i}\right) \xrightarrow{s_{0} f_{i}\left(C_{i}\right)} f_{0}\left(C_{i}\right) \cdots \xrightarrow{i_{1}\left(\alpha_{n}\right)} f_{0}\left(C_{n}\right)\right) \\
= & s_{i}\left(f_{0}\left(C_{0}\right) \xrightarrow{f_{1}\left(\alpha_{1}\right)} \cdots \xrightarrow{f_{1}\left(\alpha_{n}\right)} f_{0}\left(C_{n}\right)\right) \\
= & s_{i} f_{n}(\boldsymbol{\beta}) .
\end{aligned}
$$

Theorem 3.2.3. We have an adjunction $h \dashv N$.
Proof. We use the hom-set caracterisation of adjunctions. Let $X \in$ obs \mathscr{S} et, and $\mathscr{C} \in \operatorname{ob} \mathscr{C}$ at. Define $H_{\mathscr{C} \text { at }}$ to be the set of functors $F:\left.\mathscr{F} X\right|_{2} \longrightarrow \mathscr{C}$ such that for all 2-simplex $x \in X_{2}$ we have $F\left(d_{2}(x) d_{0}(x)\right)=F d_{1}(x)$. Define $H_{\mathscr{S}_{e t}}$ to be the set of maps $f_{1}: X_{1} \longrightarrow N \mathscr{C}_{1}$ such that $\forall x \in X_{2}$ we have $f_{1} d_{1}(x)=f_{1} d_{0}(x) f_{1} d_{2}(x)$. Consider the chain bijections

$$
[h X, \mathscr{C}]_{\mathscr{C} a t} \longleftrightarrow H_{\mathscr{C} a t} \longleftrightarrow H_{\mathscr{S} e t} \longleftrightarrow[X, N \mathscr{C}]_{s \mathscr{S} e t},
$$

where the first two are obviously defined, and the last one is defined using the previous two lemmas. Remark that they all are natural bijections in X and \mathscr{C}, and so is their composite.

Lemma 3.2.4. We have $h N \cong 1$. Consequently, h is surjective and full, and N is an embedding.

Proof. Let $\mathscr{C} \in \mathrm{ob} \mathscr{C}$ at. Recall the process that constructs the homotopical category of $N \mathscr{C}$. We first consider the free category spanned by the underlying graph of \mathscr{C} $: \mathscr{F}=\mathscr{F}($ hom $\mathscr{C} \rightrightarrows \mathrm{ob} \mathscr{C})$, which we then quotient by a congruence relation. But one can check that a morphism $m_{k} \cdots m_{1}$ in \mathscr{F}, i.e. a word of morphisms of \mathscr{C} with matching codomains and domains from a letter to the next, is precisely identified with the composite in \mathscr{C} of the letters : $m_{k} \cdots m_{1} \simeq m_{k} \circ \cdots \circ m_{1}$. Therefore, $h N \mathscr{C}=$ \mathscr{C}. Next, it can be seen from the definition that $h N F=F$, for all functor $F \in$ hom $\mathscr{C a t}$. Thereby, $h N \cong 1$.

Chapter 4

Quasi-categories

We now define the notion of quasi category, and provide a different construction for the homotopical category of a quasi category. From here, the nerve functor N will prove to be a 2 -embedding $\mathscr{C} a t \longrightarrow q \mathscr{C} a t_{2}$, i.e. that quasi categories is indeed a generalisation of categories.

4.1 Definition

A simplicial set $X \in$ obs \mathscr{S} et is a quasi-category if it has the right (not necessarily unique) lifting property with respect to all inner horn inclusion $\Lambda^{k}[n] \hookrightarrow \Delta[n]$, $\forall n \geq 2$, i.e.

Denote by $q \mathscr{C}$ at the full subcategory of $s \mathscr{S}$ et spanned by quasi-categories.

4.2 A new look at the adjunction $h \vdash N$

Nerve. The functor h admits a much simplier description if restricted to $q \mathscr{C}$ at, which we'll make explicit later. We first show that the nerve functor N corestricts to a functor $N: \mathscr{C} a t \longrightarrow q \mathscr{C} a t$.

Lemma 4.2.1. Let $\mathscr{C} \in \operatorname{ob} \mathscr{C}$ at be a category. Then its nerve $N \mathscr{C}$ is a quasicategory. Moreover, the lift is unique.

Proof. Let $n \geq 2,1 \leq k \leq n-1$, and $f: \Lambda^{k}[n] \longrightarrow N \mathscr{C}$ be a simplicial map. Then there exists $C_{0}, \ldots, C_{n} \in \operatorname{ob} \mathscr{C}, \alpha_{i}: C_{i-1} \longrightarrow C_{i}$ such that

$$
\begin{aligned}
& f_{n-1}\left(d_{i}\left(1_{[n]}\right)\right) \\
& = \begin{cases}C_{1} \xrightarrow{\alpha_{2}} \cdots \xrightarrow{\alpha_{n}} C_{n} & \text { if } i=0, \\
C_{0} \xrightarrow{\alpha_{1}} \cdots C_{i-1} \xrightarrow{\alpha_{i+1} \alpha_{i}} C_{i+1} \cdots \xrightarrow{\alpha_{n}} C_{n} & \text { if } 1 \leq i \leq n-1, i \neq k, \\
C_{0} \xrightarrow{\alpha_{1}} C_{1} \xrightarrow{\alpha_{2}} \cdots \xrightarrow{\alpha_{n-1}} C_{n-1} & \text { if } i=n .\end{cases}
\end{aligned}
$$

Define $\tilde{f}: \Delta[n] \longrightarrow N \mathscr{C}$ by extending f in the following way:

$$
\tilde{f}_{n}\left(1_{[n]}\right)=\left(C_{0} \xrightarrow{\alpha_{1}} \cdots \xrightarrow{\alpha_{n}} C_{n}\right) .
$$

It is well defined, and thus $N \mathscr{C}$ is a quasi-category. If \tilde{f}^{\prime} is another extension of f, then for $1 \leq i \leq n$ we have $\tilde{f}_{1}\left(d_{0} \cdots \hat{d_{i-1}} \hat{d_{i}} \cdots d_{n}\left(1_{[n]}\right)\right)=\alpha_{i}=\tilde{f}_{1}^{\prime}\left(d_{0} \cdots \hat{d_{i-1}} \hat{d_{i}} \cdots d_{n}\left(1_{[n]}\right)\right)$ which implies $\tilde{f}_{n}=\tilde{f}_{n}^{\prime}$, and so $\tilde{f}=\tilde{f}^{\prime}$, by lemma 3.2.2.

Homotopicial category. If $X \in$ ob $q \mathscr{C}$ at, we define a category $\dot{h} X$ as follow.

- ob $\dot{h} X=X_{0}$.
- $\forall x, y \in \mathrm{ob} \dot{h} X$, denote by $H(x, y)=\left\{f \in X_{1} \mid d_{0} f=y, d_{1} f=x\right\}$, define an equivalence relation on $H(x, y)$ by $f \dot{\sim} g$ if and only if $\exists \alpha \in X_{2}$ such that $d_{0} \alpha=f, d_{1} \alpha=g, d_{2} \alpha=s_{0} x$, i.e.

and define define $[x, y]_{\dot{h} X}=H(x, y) / \dot{\sim}$. We have to check that $\dot{\sim}$ is indeed an equivalence relation.
- Reflexivity. Take $f \in H(x, y)$, and consider $s_{0} f$:

- Symmetry. Take $f, g \in H(x, y)$ such that $f \dot{\sim} g$. Consider $\alpha \in X_{2}$ the simplex that gives $f \dot{\sim} g$ (defined above), and $s_{0} s_{0} x$:

There is a well defined simplicial map

$$
\begin{aligned}
& \phi: \Lambda^{2}[3] \longrightarrow X \\
& {[[1,2,3]] }=d_{0}\left(1_{[n]}\right) \longmapsto \alpha \\
& {[[0,2,3]]=} d_{1}\left(1_{[n]}\right) \longmapsto s_{0} f \\
& {[[0,1,2]]=d_{3}\left(1_{[n]}\right) \longmapsto s_{0} s_{0} x, }
\end{aligned}
$$

which lifts trough $\Delta[3]$. Remark that $\beta=\phi([[0,1,3]])$ is as follow :

and so $g \dot{\simeq} f$.

- Transitivity. Let $e, f, g \in H(x, y)$ be such that $e \dot{\sim} f \dot{\simeq} g$, and let $\alpha, \beta \in X_{2}$ be the associated 2 -simplicies respectively. As before, there is a well defined simplicial map

$$
\begin{aligned}
\phi: \Lambda^{1}[3] & \longrightarrow X \\
{[[1,2,3]]=d_{0}\left(1_{[n]}\right) } & \longmapsto \alpha \\
{[[0,1,3]]=d_{2}\left(1_{[n]}\right) } & \longmapsto \beta \\
{[[0,1,2]]=d_{3}\left(1_{[n]}\right) } & \longmapsto s_{0} s_{0} x,
\end{aligned}
$$

which lifts trough $\Delta[3]$. We have that $\gamma=\phi([[0,2,3]])$ is as follow :

and so $e \dot{\sim} g$.

- If $x \in \mathrm{ob} \dot{h} X$, the identity morphism is given by $\left[s_{0} x\right]_{\dot{\sim}}$,
- If $e, f, g \in X_{1}$, then $[f]_{\dot{\sim}}[e]_{\dot{\sim}}=[g]_{\dot{\sim}}$ if and only if $\exists \alpha \in X_{2}$ such that $d_{0} \alpha=e$, $d_{1} \alpha=g$, and $d_{2} \alpha=f$, i.e.

If $f: X \longrightarrow Y$ is a simplicial map, we can define a functor $\dot{h} f: \dot{h} X \longrightarrow \dot{h} Y$ is a very similar way that with h. We then have a functor $\dot{h}: q \mathscr{C}$ at $\longrightarrow \mathscr{C}$ at.

Adjunction. In a very similar way than with the "classical" homotopical category functor h, we show that we have an adjunction $\dot{h} \dashv N: q \mathscr{C}$ at $\rightleftarrows \mathscr{C}$ at. Consequently, we have the following result :

Proposition 4.2.2. There is a natural isomorphism $h \cong \dot{h}: q \mathscr{C}$ at $\longrightarrow \mathscr{C}$ at.
Proof. We have isomorphisms

$$
[h-1,-2]_{\mathscr{C a t}} \cong[-1, N-2]_{q \mathscr{C a t}} \cong[\dot{h}-1,-2]_{\mathscr{C a t}}
$$

that are natural in both -1 and -2 . By the Yoneda lemma, $h \cong \dot{h}$ naturally.

4.3 The 2-category of quasi-categories

Lemma 4.3.1. The functor $h: s \mathscr{S}$ et $\longrightarrow \mathscr{C}$ at is monoidal.
Proof. Let $X, Y \in \operatorname{obs} \operatorname{S}$ et be two simplicial sets, we show that $h(X \times Y) \cong h X \times h Y$ using the universal property of the product. First of all, we can endow $h(X \times Y)$ with the obvious projection maps. Let $\mathscr{C} \in$ ob \mathscr{C} at be a category, and $F: \mathscr{C} \longrightarrow h X$, $F^{\prime}: \mathscr{C} \longrightarrow h Y$ be two functors. Define

$$
\begin{aligned}
G: \mathscr{C} & \longrightarrow h(X \times Y) \\
C & \longmapsto\left(F C, F^{\prime} C\right) \\
f & \longmapsto\left[\left(\alpha_{n}, s_{0} d_{0} \beta_{m}\right) \cdots\left(\alpha_{0}, s_{0} d_{0} \beta_{m}\right)\left(s_{0} d_{1} \alpha_{0}, \beta_{m}\right) \cdots\left(s_{0} d_{1} \alpha_{0}, \beta_{0}\right)\right]_{\simeq, X \times Y},
\end{aligned}
$$

where $F f=\left[\alpha_{n} \cdots \alpha_{0}\right]_{\simeq, X}$ and $F^{\prime} f=\left[\beta_{m} \cdots \beta_{0}\right]_{\simeq, Y}$. We check that G is well defined for \sim. Suppose that $\alpha^{\prime} \in X_{1}$ is such that $\alpha_{j+1} \alpha_{j} \sim \alpha^{\prime}$, for some $0 \leq j<n$, and let $H \in X_{2}$ be the associated 2-simplex. Remark that $\left(H, s_{0} s_{0} d_{1} \beta_{m}\right) \in(X \times Y)_{2}$ is of the following form :

and hence $\left(\alpha_{j+1}, s_{0} d_{1} \beta_{m}\right)\left(\alpha_{j}, s_{0} d_{1} \beta_{m}\right) \sim\left(\alpha^{\prime}, s_{0} d_{1} \beta_{m}\right)$. It comes that G is compatible with \sim in its first variable. The same reasoning goes for the second, and as \simeq are generated by \sim, it results that G is well defined. Clearly, it commutes with the projection maps. To see that it is unique on the gound of objects is trivial. Suppose that $G^{\prime}: \mathscr{C} \longrightarrow h(X \times Y)$ is another functor that commutes with the projections. Let $f \in \operatorname{hom} \mathscr{C}$, and $\left[\left(\gamma_{k}, \delta_{k}\right) \cdots\left(\gamma_{0}, \delta_{0}\right)\right]=G^{\prime} f$. Remark that

Hence, G^{\prime} can we written in the same way than G, making the two necessarily equal.

We show that $s \mathscr{S}$ et is cartesian closed.

- It is easy to see that $\Delta[0]$ is terminal.
- We can define a product in s \mathscr{S} et using the product in \mathscr{S} et pointwise, i.e. if $X, Y \in \mathrm{obs} \operatorname{S}$ et, then $(X \times Y)_{n}=X_{n} \times Y_{n}$, and the faces and degeneracies are given by functoriality of \times in \mathscr{S} et.
- If $X, Y \in$ obs \mathscr{S} et, we define the internal hom as $\left(Y^{X}\right)_{n}=[X \times \Delta[n], Y]_{s \mathscr{S} e t}$, where the face maps are given by

$$
d_{i}=\left(1 \times d_{*}^{i}\right)^{*}:[X \times \Delta[n], Y]_{s \mathscr{S} e t} \longrightarrow[X \times \Delta[n-1], Y]_{s \mathscr{S} e t},
$$

where $d_{*}^{i}: \Delta[n-1]=[-,[n-1]]_{\Delta} \longrightarrow \Delta[n]=[-,[n]]_{\Delta}$ is the postcomposition by $d^{i}:[n-1] \longrightarrow[n]$, and the degeneracies s_{i} are defined similarily.

Theorem 4.3.2. The simplicial set Y^{X} defined above is indeed an exponential object.

Proof. Take $A, B, C \in \operatorname{obs} \mathscr{S}$ et. We show that $\left[A, C^{B}\right]_{s \mathscr{S} e t} \cong[A \times B, C]_{s \mathscr{S} e t}$. Take $f: A \longrightarrow C^{B}$ a simplicial map. We have maps $f_{n}: A_{n} \longrightarrow[B \times \Delta[n], C]$. Define

$$
\begin{aligned}
\hat{f_{n}}:(A \times B)_{n}=A_{n} \times B_{n} & \longrightarrow C_{n} \\
(\alpha, \beta) & \longmapsto f_{n}(\alpha)_{n}\left(\beta, 1_{[n]}\right) .
\end{aligned}
$$

We show that the \hat{f}_{n} induce a simplicial map $\hat{f}: A \times B \longrightarrow C$. Suppose $n \geq 1$, take $0 \leq i \leq n+1$, and $(\alpha, \beta) \in(A \times B)_{n}$. Then

$$
\begin{aligned}
\hat{f}_{n-1}\left(d_{i} \alpha, d_{i} \beta\right) & =f_{n-1}\left(d_{i} \alpha\right)_{n-1}\left(d_{i} \beta, 1_{[n-1]}\right) \\
& =\left(\left(1 \times d_{*}^{i}\right)^{*} f_{n}(\alpha)\right)_{n-1}\left(d_{i} \beta, 1_{[n-1]}\right) \\
& =f_{n}(\alpha)_{n-1}\left(d_{i} \beta, d_{*}^{i} 1_{[n-1]}\right) \\
& =f_{n}(\alpha)_{n-1}\left(d_{i} \beta, d_{i} 1_{[n]}\right) \\
& =d_{i} f_{n}(\alpha)_{n}\left(\beta, 1_{[n]}\right)
\end{aligned}
$$

Using a similar reasonning for the degeneracies s_{i}, we obtain that $\hat{f}: A \times B \longrightarrow C$ is indeed a implicial map. Take now $g: A \times B \longrightarrow C$, and define

$$
\begin{aligned}
g^{\prime}(\alpha, n)_{k}: B_{k} \times \Delta[n]_{k} & \longrightarrow C_{k} & \text { for } \alpha \in A_{n} \\
(\beta, \delta) & \longmapsto g_{k}\left(A_{\delta} \alpha, \beta\right) & \\
\check{g}_{n}: A_{n} & \longrightarrow[B \times \Delta[n], C]_{s \mathscr{S} \text { et }} & \\
\alpha & \longmapsto g^{\prime}(\alpha, n) . &
\end{aligned}
$$

Then the $(\hat{-})$ and the $(\stackrel{-}{-})$ constructions are mutually inverse, which show that the \check{g}_{n} give rise to a well defined simplicial map \check{g}, and that $\left[A, C^{B}\right]_{s \mathscr{L} e t} \cong[A \times B, C]_{s \mathscr{S e t}}$.

Denote by $q \mathscr{C} a t_{\infty}$ the category $q \mathscr{C}$ at seen as a $s \mathscr{S}$ et-enriched category, and by $q \mathscr{C} a t_{2}=h_{*} q \mathscr{C} a t_{\infty}$ the category $q \mathscr{C} a t_{\infty}$ seen as a $\mathscr{C} a t$-enriched category (i.e. a 2 category) trough the functor h. Also, denote by $\mathscr{C} a t_{2}=N \mathscr{C} a t$ the full subcategory of $q \mathscr{C} a t_{2}$ spanned by nerves of categories.

Lemma 4.3.3. Let $X, Y \operatorname{ob} q \mathscr{C}$ at. Then the simplicial hom Y^{X} is a quasi category.
Proof. This proof requiers knowledge about model categories, and can be found in [2].

Theorem 4.3.4. The category $q \mathscr{C} \operatorname{at}_{2}$ is cartesian closed as a 2-category.
Proof. - The above terminal simplicial set $\Delta[0]$ is a quasi-category, as the only $\operatorname{map} \Lambda^{k}[n] \xrightarrow{!} \Delta[0]$ with $0<k<n$ lifts trough $\Lambda^{k}[n] \longleftrightarrow \Delta[n]$ (in a unique way moreover). It is a 2-categorical terminal object, as $\forall X \in$ ob $q \mathscr{C} a t_{2}$, we have $[X, \Delta[0]]_{q_{\mathscr{C a t}}^{2}}=h[X, \Delta[0]]_{s \mathscr{S} e t} \cong h \Delta[0] \cong \mathbb{1}$, the terminal category.

- We show that the product of two quasi-categories $X_{1}, X_{2} \in \mathrm{ob} q \mathscr{C} a t_{2}$ is a quasi-category. Take $f: \Lambda^{k}[n] \longrightarrow X_{1} \times X_{2}$, where $0<k<n$, and consider $\operatorname{proj}_{i} f: \Lambda^{k}[n] \longrightarrow X_{i}$. We have a lift $g_{i}: \Delta[n] \longrightarrow X_{i}$ of $\operatorname{proj}_{i} f$ trough the inclusion $l: \Lambda^{k}[n] \longleftrightarrow \Delta[n]$. By the universal property of the product, we have a map $g=\left\langle g_{1}, g_{2}\right\rangle: \Delta[n] \longrightarrow X_{1} \times X_{2}$ such that $f=g l$. Moreover, the product \times from s \mathscr{S} et is a 2-categrical product, as $\forall Y \in$ ob $q \mathscr{C}_{\text {at }}^{2}$

$$
\begin{aligned}
{\left[Y, X_{1} \times X_{2}\right]_{q \mathscr{C a t}}^{2} } & \\
& =h\left[Y, X_{1} \times X_{2}\right]_{s \mathscr{S} e t} \\
& \cong h\left(\left[Y, X_{1}\right]_{s \mathscr{S} e t} \times\left[Y, X_{2}\right]_{s \mathscr{S} e t}\right) \\
& \cong h\left[Y, X_{1}\right]_{s \mathscr{S} e t} \times h\left[Y, X_{2}\right]_{s \mathscr{S} e t} \quad \text { as } h \text { is monoidal } \\
& =\left[Y, X_{1}\right]_{q \mathscr{C} a t_{2}} \times\left[Y, X_{2}\right]_{q \mathscr{C a t}} .
\end{aligned}
$$

- Let $Y, Z \in$ ob $q \mathscr{C} a t_{2}$, and define the internal hom as Z^{Y}, the same as defined above. It is a 2-categorical exponential object, as $\forall X \in$ ob $q \mathscr{C} a t_{2}$ we have

$$
\begin{aligned}
{\left[X, Z^{Y}\right]_{q \mathscr{C a} t_{2}} } & =h\left[X, Z^{Y}\right]_{s \mathscr{S} e t} \\
& \cong h[X \times Y, Z]_{s \mathscr{L} e t} \\
& =[X \times Y, Z]_{q \mathscr{C} t_{2}} .
\end{aligned}
$$

Lemma 4.3.5. There is a natural isomorphism :

$$
\left[-_{1}, N-2\right]_{s \mathscr{S} e t} \cong N\left[h-{ }_{1},-_{2}\right]_{\mathscr{C} a t}: s \mathscr{S} e t^{\mathrm{op}} \times \mathscr{C} a t \longrightarrow \text { s } \mathscr{S} \text { et } .
$$

Proof. Take $X \in \operatorname{obs}$ S et. We have adjunctions

Recall that h preserve products. Hence

$$
[X, N-]_{s \mathscr{L} e t} \vdash h(-\times X) \cong h-\times h X \dashv N[h X,-]
$$

and so $\left[-_{1}, N-2\right]_{s \mathscr{S} e t} \cong N\left[h-1,-{ }_{2}\right]$ naturally as required.
Proposition 4.3.6. We have $\mathscr{C a t} \cong \mathscr{C}$ at t_{2} as 2 -categories.
Proof. We already know that N is an embedding, and so $\mathscr{C} a t \cong \mathscr{C}$ at t_{2} as categories. Recall that $h N \cong 1$. Let $\mathscr{C}, \mathscr{D} \in \operatorname{ob} \mathscr{C}$ at. Then by previous result, $N[\mathscr{C}, \mathscr{D}]_{\mathscr{C} a t} \cong$ $[N \mathscr{C}, N \mathscr{D}]_{s \mathscr{S} \text { et }}$ in s \mathscr{S} et. Applying h gives us the required isomorphism of homcategories $[\mathscr{C}, \mathscr{D}]_{\mathscr{C} a t} \cong[N \mathscr{C}, N \mathscr{D}]_{\mathscr{C} a t_{2}}=[N \mathscr{C}, N \mathscr{D}]_{\mathscr{C} a t_{2}}$.

Chapter 5

Adjunctions

This chapter brings the central notion of adjunctions to $q \mathscr{C a} t_{2}$ using 2-categories and double categories. We moreover give a characterisation in term of absolute right lifting diagram.

5.1 Definition

Let \mathscr{K} be a 2-category, $A, B \in \mathrm{ob} \mathscr{K}$. An adjunction in \mathscr{K} consists in two antiparallel 1-cells $f: A \rightleftarrows B: u$, and two 2-cells $\eta: 1 \longrightarrow u f, \varepsilon: f u \longrightarrow 1$ such that the following triangle identities holds:

or, in term of pasting diagrams,

We then note $f \dashv u: A \longrightarrow B$ by omitting η and ε. We can compose adjunctions in the following way : if $A \xrightarrow{f \dashv u} B \xrightarrow{f^{\prime} \dashv u^{\prime}} C$, then define $f^{\prime} f \dashv u u^{\prime}: A \longrightarrow C$ by

Together with the obvious identity adjunction $1,1: 1 \dashv 1: A \longrightarrow A$, we obtain a category \mathscr{K}_{\dashv} whose objects are those of \mathscr{K}, and morphisms are adjunctions in \mathscr{K}.

Proposition 5.1.1. Let \mathscr{K} and \mathscr{L} be two 2-categories, and $F: \mathscr{K} \longrightarrow \mathscr{L}$ be a 2-functor. Then an adjunction $\eta, \varepsilon: f \dashv u$ in \mathscr{K} gives rise to an adjunction $F \eta, F \varepsilon: F f \dashv F u$ in \mathscr{L}. Hence, we have a functor $F_{\vdash}: \mathscr{K}_{\vdash} \longrightarrow \mathscr{L}_{\vdash}$.

Proof. This can be verified by applying F on the triangle identities of $\eta, \varepsilon: f \dashv u$.

Lemma 5.1.2. Let $f \dashv u: A \longrightarrow B$ and $f^{\prime} \dashv u^{\prime}: A^{\prime} \longrightarrow B^{\prime}$ be two adjunctions, and $a: A \longrightarrow A^{\prime}, b: B \longrightarrow B^{\prime}$ be two morphisms. We have a bijection $\left[a u, u^{\prime} b\right]_{\left[A, B^{\prime}\right]} \cong$ $\left[f^{\prime} a, b f\right]_{\left[A, B^{\prime}\right]}$.

Proof. If $\lambda: a u \longrightarrow u^{\prime} b$, define $\Phi(\lambda)$ as

and if $\mu: f^{\prime} a \longrightarrow b f$, define $\Psi(\mu)$ as

Using the hypothesis of adjunctions $f \dashv u$ and $f^{\prime} \dashv u^{\prime}$, we obtain that Φ and Ψ are mutually inverse.

If $\lambda \in\left[a u, u^{\prime} b\right]_{\left[A, B^{\prime}\right]}$ and $\mu \in\left[f^{\prime} a, b f\right]_{\left[A, B^{\prime}\right]}$ are such that $\Phi(\lambda)=\mu$ (or equivalently $\lambda=\Psi(\mu)$), then those 2-cells are said mates under the adjunctions $f \dashv u$ and $f^{\prime} \dashv u^{\prime}$. Define the double category \mathscr{K}_{1} as $H \mathscr{K}_{1}=\mathscr{K}_{,}, V \mathscr{K}_{1}=\mathscr{K}_{-}$, and having as squares the 2 -cells of the form $\lambda: a u \longrightarrow u^{\prime} b$, using the previous notations. Define \mathscr{K}_{2} the same way, except that the squares are given by 2 -cells of the form $\mu: f^{\prime} a \longrightarrow b f$.

Lemma 5.1.3. By extending the definition of Φ and Ψ to any pair of adjunction connected by an adequate pair of morphisms, we obtain two double functors Φ : $\mathscr{K}_{1} \rightleftarrows \mathscr{K}_{2}: \Psi$ that are mutually inverse.

Proof. We already know that Φ and Ψ are identities on the objects, vertical and horizontal morphisms, and mutually inverse on squares. Clearly, they preserve all kind of identities. It remains to show that they are compatible with compositions. It is sufficient to show it for Φ. The vertical composition are preserved by definition of compositions on \mathscr{K}_{H} :

$$
\Phi\left(\binom{\lambda}{\lambda^{\prime}}\right)=
$$

whereas horizontal composition are as well, by definition of an adjunction :

$$
\left(\Phi(\mu) \Phi\left(\mu^{\prime}\right)\right)=
$$

Theorem 5.1.4. Left and right adjoints are unique up to isomorphism, should they exist.

Proof. Suppose $f \dashv u$ and $f^{\prime} \dashv u$. Let the mates of

under the adjunctions $f \dashv u$ and $f^{\prime} \dashv u$ be respectively

Then $\Psi\left(\left(\mu \mu^{\prime}\right)\right)=\left(\Psi(\mu) \Psi\left(\mu^{\prime}\right)\right)=\left(1_{u} 1_{u}\right)=1_{u}$, and so $\left(\mu \mu^{\prime}\right)=1_{f}$ as Ψ is an isomorphism $\mathscr{K}_{2} \xrightarrow{\cong} \mathscr{K}_{1}$. Similarily, $\left(\mu^{\prime} \mu\right)=1_{f^{\prime}}$, and so $f \cong f^{\prime}$. The unicity of right adjoints is obtained in a very similar way.

5.2 Absolute right lifting

Let \mathscr{K} be a 2-category. An absolute right lifting diagram is a 2-cell $\lambda: f l \longrightarrow g$ such that $\forall \chi: f a \longrightarrow g b, \exists!\bar{\chi}: a \longrightarrow l b$ such that

or, in term of parting diagrams :

Theorem 5.2.1. Let $\varepsilon: f u \longrightarrow 1$ be a 2-cell. Then it is an absolute right lifting diagram if and only if it is the counit of an adjunction $f \dashv u$.

Proof. - Suppose that ε is an absolute right lifting. Define $\eta=\overline{1_{f}}$:

The first triangle identity is already verified. Consider

By the uniqueness of the lift, the second triangular identity is verified.

- Suppose that we have an adjunction $\eta, \varepsilon: f \dashv u$, and let take $X \in \mathrm{ob} \mathscr{K}$,
$a: X \longrightarrow A$, and $b: X \longrightarrow B$. Define $\Gamma:[f a, b] \rightleftarrows[a, u b]: \Upsilon$ by
$\Upsilon:$

By the triangle identities, we have that Γ and Υ are mutually inverse. Hence, any 2-cell χ as above admit a unique right lift $\Gamma(\chi)$ trough ε.

Chapter 6

Limits

Recall that $\forall A \in$ obs \mathscr{S} et, we have an adjunction $A \times-\dashv(-)^{A}$. If $B \in$ obs S et, denote by $c: B \longrightarrow B^{A}$ the map associated to the projection $\pi: A \times B \longrightarrow B$ in the hom-set natural isomorphism $[A \times B, B] \cong\left[B, B^{A}\right]$.

Remark that $\Delta[0]$ is a terminal object in $s \mathscr{S}$ et. Hence it is a quasi category, and a neutral element for the product. In a similar manner as before, we obtain natural isomorphisms $[J, X]_{q \mathscr{C a t}} \cong\left[\Delta[0], X^{J}\right]_{s \mathscr{S} \text { et }}$, where $J, X \in$ ob $q \mathscr{C}$ at. If $f: J \longrightarrow X$, we identify it with it associated morphism $f: \Delta[0] \longrightarrow X^{J}$.

Let $d: J \longrightarrow X$ be a diagram (i.e. a morphism). An element $l: \Delta[0] \longrightarrow X$ is a limit of d if there is an absolute right lifting diagram as follows :

Proposition 6.0.2. Limits are unique up to isomorphism, should they exist.

Proof. If $m: \Delta[0] \longrightarrow X$ is another limit of d, with absolute right lifting μ, then
there exists a 2 -cell $\bar{\mu}$ such that

Similarily, there exists a 2 -cell $\bar{\lambda}$ which factors λ through μ. By the universal property of the absolute right lifting, we have that $\bar{\lambda}$ and $\bar{\mu}$ are mutually inverse, which shows that $l \cong m$.

More generally, let $k: K \longrightarrow X^{J}$ be a morphism. We say that X admits all limits of the family of diagrams k if there exists an absolute right lifting

Proposition 6.0.3. The quasi category X admits all limits of the family of diagrams k if and only if every diagram $d: \Delta[0] \longrightarrow X^{J}$ that factors trough k admit a limit.

Proof. See proposition 5.2.10 p. 59 in [2].

Corollary 6.0.4. If all diagram $d: \Delta[0] \longrightarrow X$, admit a limit, then we have an adjunction $c \dashv \lim : X \longrightarrow X^{J}$.

Proof. Consider the family of diagrams $1: X^{J} \longrightarrow X^{J}$. By assumption and the previous result, X admits all limits of 1, i.e. we have an absolute right lifting

Therefore, by theorem 5.2.1, $c \dashv \lim$.

Lemma 6.0.5. Let $\eta, \varepsilon: f \dashv u: Y \longrightarrow X$ be an adjunction. By proposition 5.1.1 and the fact that $(-)^{J}$ as a 2-functor, we have an adjunction $\eta_{*}, \varepsilon_{*}: f_{*} \dashv u_{*}: Y^{J} \longrightarrow A^{J}$.

We claim that the following 2-cells are equal :

Proof. Recall that $\eta_{*}: 1 \longrightarrow(u f)_{*}$ is such that $\left(\eta_{*}\right)_{t}=\eta 1_{t}, \forall t \in Y^{J}$. The above 2cell equality can be stated with a commutative diagram :

Take $y \in Y$, a simplex of arbitrary dimension. Then we have

which commutes, for all y.
Theorem 6.0.6. Right adjoints preserve limits. More explicitely, let $f \dashv u: Y \longrightarrow X$ be an adjunction, and consider the following limit :

Then the following 2-cell is an absolute right lifting :

Proof. Start with a two cell

and consider

By the universal property of the absolute right lifting, we have a unique 2-cell $\overline{\chi^{\prime}}$:

which we extend into

and it remains to show that the latter 2-cell equals χ. We have

Conversey, start with a lift

Then remark that

is a lift of

$$
\begin{gathered}
A \xrightarrow{f t} X \\
\downarrow \downarrow(\varepsilon k) \chi \\
K \xrightarrow[k]{\downarrow} X^{J}
\end{gathered}
$$

One could show that the two constructions shown above are inverse to each other, and so the lift in diagram 6.2 is unique. It follows diagram 6.1 is an absolute right lifting.

Bibliography

[1] A. Lauda E. Cheng. Higher-dimentional categories: an illustrated guide book. June 2004.
[2] D. Verity E. Riehl. The 2-category theory of quasi-categories. arXiv, (1306.5144v2), October 2013. http://arxiv.org/pdf/1306.5144.pdf.
[3] T. Fiore. Double categories and pseudo algebras, 2007.
[4] G. Friedman. An elementary illustrated introduction to simplicial sets. arXiv, (0809.4221v4), December 2011. http://arxiv.org/pdf/0809.4221.
[5] J. Dolan J. C. Baez. Higher-dimentional algebra iii: n-categories and the algebra of operads. Advances in Mathematics, 135:145-206, May 1997.
[6] G.M. Kelly and R. Street. Review of the elements of 2-categories. In Category Seminar, volume 420 of Lecture Notes in Mathematics, pages 75-103. Springer Berlin Heidelberg, 1974.
[7] J.F. Jardine P.G. Goerss. Simplicial Homotopy Theory. Progress in mathematics (Boston, Mass.) v. 174. Springer, 1999.
[8] C. Simpson. Homotopy Theory of Higher Categories. New Mathematical Monographs. Cambridge University Press, December 2011.

Index

$\left.X\right|_{2}, 11$
[n], 9
$\Delta[n], 11$
$\Lambda^{k}[n], 13$
$\triangle, 9$
$\partial \Delta[n], 13$
qCat, 21
$c \mathscr{C}, 10$
$d^{i}, 9$
h, 16
n-category, 5
$s \mathscr{C}, 10$
$s^{i}, 9$

Absolute right lifting diagram, 32
Adjunction, 29
Boundary of $\Delta[n], 13$
Congruence relation, 2
Cosimplicial
identities, 10
Degeneracy map, 9
Double category, 5
Enriched category, 3

Horizontal category, 5
Horn, 13
Inner horn, 14
Limit, 35
Mates, 31
Monoidal category, 3
Nerve, 15
functor, 16
Quasi-category, 21
Quotient category, 2
Simplex, 11
Simplicial category, 9
object, 10
set, 11
Standard n-simplex, 11
Tensor product, 3
Vertical category, 5

Face map, 9
Free category, 1
Homotopical category, 16

[^0]: ${ }^{1} \Delta=\mathrm{y}: \Delta \longrightarrow s \mathscr{S}$ et is then a cosimplicial simplicial set !

[^1]: ${ }^{2}$ somewhat "smashed"

