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Definition. This document is unofficial lecture notes from the course Finite dimen-
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errors, without warranty of any kind.



Chapter 1

Algebras and modules

1.1 Algebras

For all this course, the letter KK will denote a (commutative) field.
Definition 1.1.1 (K-algebra). A K-algebra is a quadruple (A,+,-,*) where
1. (A,+,-) is a ring with unit 14,
2. (A,+,%) is a K-vector space,
3. VA € K,Va,b € A we have

(Axa)-b=Ax(a-b)=a-(Axb).

In order to simplify notations, we’ll denote Aa = A xa.

Remark 1.1.2. Since a K-algebra A is also a K-vector space, we call the dimension
of A its dimension as a K-vector space.

Example 1.1.3. C is a C-algebra of dimension 1, and a R-algebra of dimension 2.

Definition 1.1.4 (K-algebra, alternate definition). . A K-algebra is a quadruple
(A,+,-,0) where :

1. (A,+,-) is aring with unit 14,
2. ¢ :K— Z(A) is a ring homomorphism.
Proposition 1.1.5. The two definitions of K-algebra are equivalent.

Proof. Take A a K-algebra in the sense of definition 1.1.1, and define

9:K—Z(A)
A—Axly.



2 CHAPTER 1. ALGEBRAS AND MODULES

Condition 3 of definition 1.1.1 states that the above morphism is well defined.
Conversely, take B a K-algebra in the sense of definition 1.1.4, and define the *
operation by

x:KxB—B
(A,b) —> Axb=¢(A)-D.

Since ¢ takes its image in Z(B), the above operation satisfies condition 2 and 3 of
definition 1.1.1. O

Remark 1.1.6. The morphism ¢ : K — Z(A) is always injective, unless A = 0.
Examples 1.1.7. 1. Kis a K-algebra of dimension 1 ;

2. M,(K) with the morhism

¢ : K — M,(K)
A — Al

is a K-algebra of dimension n? ;

3. If (A, +,-, %) is a K algebra, the opposite algebra (A°P,+,®, ) is defined as
follows :

(@) (A,+,%) = (A°P,+,x) as K-vector spaces,
(b) Ya,b e A°®,a®b=b-a,;
4. If G is a group, the group algebra KG is a K-algebra of dimension |G| ;

5. The previous example also works if G is a monoid, and the result is called a
monoid algebra ;

6. A quiver Q = (V,E,¢) is a finite directed (multi-)graph :

(a) V is a finite set of vertices,
(b) E is a finite set of directed edges,
(©)
€:E— VXV
e — (&(e),&1(e)),
where £)(e) and & (e) are the origin and rarget of e respectively.
For every vertex v € V, we define a path /, of length O from v to v, which is

called a lazy path. Let KQ be the K-vector space with basis the set of paths
of 0. The multiplication is induced by the concatenation of paths :

et Uiaf) = { o) €8 ) =(5)

and the neutral element is given by )" ¢y /.
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Definition 1.1.8 (Morphism of algebras). Let A and B be two K-algebras. A mor-
phism of algebras f : A — B is a K-linear ring morphism. An algebra isomor-
phism is a bijective algebra morphism. Starting with definition 1.1.4, f is a algebra
morphism if it is a morphism of ring such that the following diagram commutes :

K

>\

A B.

1.2 Modules

1.2.1 Basic definitions

Definition 1.2.1 (R-Module). Let R be a ring (with unit). A left R-module is a triple
(M, +,%) where

1. (M,+) is an abelian group,
2. % :RxM — M is such that Vr,s € R,VYm,m' € M

(r+s)xm=rxm+s*m
rx(m+m') =rxm+rxm
(r-s)xm=rx(sxm)

1rxm =m.

Again, in order to simplify notation, we’ll denote rm = r*m. A right R-module is
defined in a similar way, but with x : M x R — M. If M is a left R-module, we
emphasize this structure with the notation gM. Similarily, if M is a right R-module,
we note Mpg.

Properties 1.2.2.

}"OM = OM
ORm = OM
r(—m) = —(rm) = (—r)m.

Remark 1.2.3. Since algebras are ring, we have a definition of module M over an
K-algebra A. Moreover, in this case, M is also a K-vector space (by restriction of
scalar along ¢ : K — A).

Definitions 1.2.4. Let M be an R-module.

1. A subgroup N < M that is stable under r* —, Vr € R is called a submodule
of M ;
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2. A submodule of gR is a left ideal of R, whereas a submodule of Ry, is a right
ideal ;
3. Letmy,...,m, € M. An R-linear combination of thos elements is an element

of M of the form };__, r;m;, for some r; € R ;

4. The module M is said finitely generated if there exist a finite subset X C M
such that every element of M is a R-linear combination of elements in X ;

5. If N,L <M, we define their sum by
N+L={n+l|neN,l €L},
The sum is direct if NNL=0,and wenote N+L=NDL;

6. A submodule N < M is called a direct summand if there exists L < M such
that M =N&L;

Definition 1.2.5 (Morphism of modules). Let M and N be two left R-modules. A
morphim of modules (of R-linear map) f: M — N is a group homomorphism
such that the following diagram commutes :

idxf
RxM RN
M f N.

We denote by Homg (M, N) the set of all R-linear maps from M to N. The definition
of morphism of right R-modules is obtained similarily.

1.2.2 Quotients

Let M be a R-module, and L C M be a submodule. Then L is a normal subgroup of
M, and the quotient group M /L is defined. Also, there is a quotient homomorphism
w:M — M/L. Since L is a submodule, M /L acquires a structure of R-module :

rkm=r*m, VYmeM,r eR.
Moreover : @ : M — M /L becomes a morphism of R-modules.

Theorem 1.2.6 (Universal property of the quotient module). For any morphism
of R-modules ¢ : M — N such that ¢ (L) = {0}, there exists a unique homomor-
phism of R-modules ¢ : M/L — N, such that the following diagram commutes
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Proof. Follows easily from the universal property of the quotient group. O

Exercise 1.2.7. w: M — M /L induces a bijection :
{X submodule of M | L C X} «— {Y submodule of M/L}.

Theorem 1.2.8 (Isomorphism theorems). 1. Let ¢ : M —> N be a homomor-
phism of R-modules. Then ¢ : M /ker § — im ¢ is an isomorphism.

2. Let N and L be submodules of M. Then the inclusion L — L+ N induces
an isomorphism of R-modules L/(LNN) — (L+N)/N.

M
|
+

L+N

L/ \N
NS

LNN
|
0

3. Let L and N be submodules of M such that L C M. ThenWe have an isomor-
phism M/N — (M/L)/(N/L).

1.2.3 Exact sequences

Definition 1.2.9 (Exact sequence). A sequence L ﬂ MY N of two homomorphism

of R-modules is said exact if im ¢ = ker y.

Properties 1.2.10. . 0 —-M Y N is exact if and only if y is injective.

2. L g M — 0 is exact if and only if ¢ is surjective.

3. Let L be a submodule of M, then the following sequence is exact : 0 — L —
M5 M/L—o.

4. More generaly, a sequence 0 — L £> M Y% L — 0 is called a short exact
sequence if it is exact for every two consecutive pair of homomorphism :

e ¢ is injective,

1%

e im¢ = kery, and so Y induced an isomorphism M /im¢ — N,
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®  is surjective.

Definition 1.2.11. 1. A section of a homomorphism of R-modules ¢ : M — N
is a homomorphism ¢ : N — M such that ¢ = idy. In that case, ¢ is
surjective and o is injective.

2. A retraction of ¢ is a homomorphism p : N — M such that p¢ = idy,. In
that case, ¢ is injective, and p is surjective.

Proposition 1.2.12. Ler 0 — L A ME L0 be a short exact sequence of R-
modules. The following are equivalent :

1. 7 has a section,

2. « has a retraction,

3. im« is a direct summand of M.
Proof.

1. = 2. Assume that 7 has a section 6 : N — M, and define € =idy,—on: M —
M. Clearly, ime C kerm = ima. Using o~! : ima — L, we obtain p =
a~'e:M — L. Then

po=o'ea
—a '(a—ocrna)
Ntz
=0
=idy .

2. = 3. Assume that o has a retraction p : M — L. Let Q = kerp. Then M =
Q@ ima. Indeed, take m € M and write m = op(m)+ (m— ap(m)). So
—_
cima ckerp
M=Q+imoa. Let m € QNima. Then 3/ € L suh that o(l) = m, and so
I=pa(l)=p(m)=0.Sol=0,and m =0. Hence QNimoa = {0}.

3. = 1. Assume that M = Q @ima. We first prove that |y : Q — L is an iso-
morphism. kerm|p = QNkerr = QNima = {0}. Let n € N. Since 7 is
surjective, 3m € M such that 7(m) = n. Then m = g+ (1), for some g € Q
and [ € L. However, (g + (1)) = m(g), and so 7|y is surjective. So it is an
isomorphism. Finaly, ¢ = nlél : N — M is a section of 7.

O

Definition 1.2.13 (Split exact sequence). Where one (and hence all) of the above
condition is satisfied, the given short exact sequence is said split.
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1.2.4 Free modules

Definition 1.2.14 (Free module). An R-module F is called free if it has a basis, i.e.
a R-generating R-linearly independent subset B C F.

Lemma 1.2.15. Let F be an R-module. Then F is finitely generated free if and
only if 3n € N such that F = R".

Proposition 1.2.16. 1. Any R-module is isomorphic to a quotient of a free mod-
ule.

2. Any finitely generated R-module is isomorphic to a quotient of a finitely gen-
erated free module.

Proof. Let M be an R-module, and G = {g; | i € I} be a set of generators of M
(such a set exists : take the whole M for instance). Let F be a free module with

basis B = {b; | i € I}, and define

O F—M
bi’—>gi>

extended by R-linearity. Then M = F /ker ¢. 0

1.3 Projective modules

Proposition 1.3.1. Let R be a ring, and let P be a left R-module. The following are
equivalent :

1. P is isomorphic the a direct summand of a free module ;

2. for every surjective homomorphism 1 and any @, there exists a lift as follows

3. for any surjective homomorphism ¢ : M — P, there exists a section G :
P—M;

4. any short exact sequence of the form 0 — L — M — P — 0 splits.

Proof.
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1. = 2. by assumption, P>~ P/, and P' & Q = F free. Let1: P — P' — F, and
p—»P 4P

7
1
1

F
o/ P)n
P
|o
N

I
I
+
M —
T

F has a basis G = {g; | i € I}. Let m; be a preimage of ¢p(g;) by =, i.e.
w(m;) = ¢p(gi). As F is free, there exists a map o : F — M such that
a(g;)) = m;. Define = an : P — M. Then ¢ = man = ¢pn = ¢.

2. = 3. Consider

3. = 4. The homomorphism M — P in the short exact sequence is surjective, and
so admits a section.

4. = 1. Recall that P is a quotient of a free module. So we have an exact sequence
0—kermt - F 5 P—0.1t splits by assumption, and so F = PG ker 7.

O]

Definition 1.3.2 (Projective module). A module satisfying one (and hence all) of
the above condition is called projective.
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Semisimplicity

2.1 Definitions

Definition 2.1.1 (Simple module). Let R be a ring, and S be a left R-module. It is
said simple if it is not trivial, and if it has no submodule other than 0 and S.

Lemma 2.1.2. S is simple if and only if S is isomorphic to R/I (as modules), where
I is a maximal left ideal of R.

Proof. <= We have S = R/I. A submodule of S corresponds to a submodule
I <M < R. Hence S is simple.

— Let S be simple. In particular, S # 0 and 3s € S\ {0}. Since R is a free

R-module with basis 1, there exists a homomorphism 7 : R — § such that

m(l) =s. We have 0 # imm < S, and as S is simple, imz = S. By the first
isomorphism theorem, S = R/ker . By simplicity of S, ker 7 is maximal.

O

Lemma 2.1.3 (Schur, general case). 1. Let S be a simple left R-module. Then
Endg S as an R-module is a division ring.

2. If S and T are two nonisomorphic simple R-modules, then Homg(S,T) = 0.
Proof. 1. Let ¢ € EndgS. Remark that ker¢,im¢ < S, and so either

(a) im¢ =0, ker¢ =S, in which case ¢ =0 ;
(b) ker¢ =0,im¢ = S, in which case ¢ is an automorphism, hence invert-
ible.

2. Similarily, a homomorphism ¢ : S — T is either O or an isomorphism.
O

Lemma 2.1.4 (The real lemma of Schur). Let A be a finite dimensional K-algebra,
and let S be a simple A-module.
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1.
2.
Proof.
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K — Ends S — Endg S = Mat,, (K), where n = dimg S ;
if K is algebraically closed, then K = Endy S.

1. If S is simple, we have S = A/I, for some (maximal) left ideal 7, and
so § is finitely generated. So S is finite dimensional (cf exercise 1, sheet
2) as a K-vector space. Therefore, Endg S < Mat,(K), where n = dimg S.
Obviously, End4 S is a subalgebra of Endk S, and we have an embedding
K‘—)El’ldASIl i—)llds

. Assume K algebraically closed, and let ¢ € Endy S. Let K[X] be the polyno-

mial ring in one variable X, and define 7 : K[X] — K[¢] <Ends S: X — ¢.
Then 7 is a K-algebra map. By the general case of Schur lemma, we
know that Endy4 S is a division algebra, and so py # 0 whenever p, y # 0,
for p,y € Ends S. Therefore, the commutative subalgebra K[¢] is a do-
main. Since K[X] is a PID, kerw is generated by a single polynomial f
which can be chosen monic (7 can’t be injective, because K[X] is infi-
nite dimensional, and dimEnd, S < n?), i.e. f is the minimal polynomial
of 9. So K[¢] = K[X]/(f). But this is a domain, so f is irreducible.
Since K is algebraically closed, f(X) =X — A, for a A € K. It follows
that K[¢] = K[X]/(X —A) =2 K, and so ¢ = Aids. Hence, the map K —
EndgA : A — Aidg is an isomorphism.

O

Proposition 2.1.5. Let A be a finite dimensional K-algebra, and let M a be finitely
generated left A-module. The following are equivalent :

1.

2.

M is a sum of simple submodules, i.e. M =Y ;c;S;, where S; < M is simple ;

M is a direct sum of finitely many simple submodules, i.e. M =@ ;c; S},
where S; < M is simple, and J finite ;

3. every submodule N < M is a direct summand of M.

Proof.

1. = 2.

2. — 3.

Define X = {J CI|Yc;S;isdirect}. Such a J € X must be finite, as
oo > dimgM > dimg } ey S; = dimg @, Sj = ¥ je;dimg S; > §J. Take
a maximal element J in X. Then we claim that S; C jes S;, Viel. Assume
igJ. IS L Djc; S, then S;N€Pc;S; is a proper submodule of S;, and so
itis 0. So the sum S; + P ¢, S; is direct, which is absurd by maximality of
J.SoM =Y,c;Si CDjc;S), and finally, M = D ¢, S;.

We have M = @c;S;, and let N < M. Suppose N # M, and define ¥ =
{L CJ|N+ &S isdirect}. Let L be maximal in Y. We claim that
N®@c Si=M. Let jeJ\L, then N+ (S; @, S1) is not direct by
maximality of L. So §; NN is not 0, so it is §; by simplicity. For every j € J,
S;CENODcrSi,andsoND D, S =M.
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3. = 1. LetT = Y.gcpm.5 simple S- It is @ submodule of M, and so by assumption, M =
T U, for some U <M. If U # 0, then we choose a nonzero submodule
V < U of minimal K-dimension. Then V must be simple by minimality, and
then we get a direct sum 7V < T @ U = M. On the other hand, V < T by
definitionof 7. SoV =U =0,and T =M.

O]

Definition 2.1.6. An A-module M satisfying one (and hence all) of the above con-
dition is said semisimple.

Remark 2.1.7. The results of proposition 2.1.5 holds for any ring R. The proof uses
Zorn’s lemma.

Definition 2.1.8. 1. A finitely generated A-module M is called semisimple iso-
typic if M is the direct sum of isomorphic simple modules. We have M = S,
for S a simple module, and we call S its fype. Lemma 2.1.9 shows that this
definition is well founded.

2. If M is semisimple, then we can group all isomorphic simple summands in its
decomposition as a direct sum of simple modules, and obtain the following :

M=(S11® - ®BSin)® - SESm1® - BSun,)

all isomorphic all isomorphic

where S; ; 2 Sx; whenever i # k. Then S; = @';.":1 S; j is called an isotypic
component of M, of type S;1 = - =S, .

Lemma 2.1.9. . Any simple submodule of a semisimple isotypic module N of
type S is isomorphic to S.

2. If M = @ Ms is a decomposition of M into isotypic components, with Ms of
type S, then any simple submodule of M isomorphic to S is contained in Ms.

3. Mg only depends on the type S, not on the chosen simple decomposition of
M. ExpllCltely, MS - @TSMT%S T

Proof. 1. N=@.,S;, where S;=S. Let T <N be simple. Then proj s, T is not
always 0, otherwise we would have 7' = 0. Take j such that 0 # proj s; T < S;.
Because S; is simple, we have proj S; T = §;. Moreover, since T is simple,
ker(projg, : T —S;) =0,andso T = S;.

2. Let T < M be a simple submodule isomorphic to S. There exists U < M
simple such that proj,, T # 0. However, proj,, T is a simple submodule
of My isomorphic to T. So by the previous point, U = T = S. The same
reasinong applies to show that projy,, T = 0, whevever V % S. So T < M.

3. Obvious from previous points.
O
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Example 2.1.10. Let A = K. A theorem in linear algebra states that every A-
module (K-vector space) has a basis. So every A-module is semisimple isotypic of
type K.

Definition 2.1.11. Let A be a finite dimensional K-algebra.
1. A is called semisimpe algebra if 4A is a semisimple module.
2. Ais called simple if A is semisimple isotypic.
Proposition 2.1.12. The following are equivalent :
1. A is semisimple ;
2. every finitely generated left A-module is projective ;
3. every finitely generated left A-module is semisimple.
Proof.

1. = 2. Let M be a finitely generated left A-module. Then In € N such that M =
F/N, where F = AP is free, and N < F. Moreover, F is semisimple, and
so N is a direct summand of F, i.e. FF =N & Q, for some submodule Q. So
M = Q is projective.

2. = 3. Let N be a submodule of M. We have a short exact sequence 0 — N —
M — M/N — 0. By assumption, M /N is projective, so the previous exact
sequence splits, and M = N@ M /N. So N is a direct summand of M, and M
is semisimple.

3. = 1. Remark that A is a finitely generated A-module.
O

Exercise 2.1.13. If A is semisimple, let A = @;_; Ms, be its isotypic decomposi-
tion. Prove that any simple A-module is isomorphic to one S;.

2.2 The Wedderburn classifications theorem

Example 2.2.1. Let D be a finite dimensional division K-algebra. Then D" =

d
|dy,...,d, €D is aleft M,(D)-module. Then y;, p)D®" is simple be-
dy
0 -+ v o 0
cause if s € D", 5 £ 0, then s; # 0 for some i, then | : s1 ls=
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0 0

: 0 5] 0 . 5]

1],and | : : : 1|=1]:|,and so M,(D)s = D"". Now,
: 0 Iy 0 : Iy

0 0

* 0 0 0 = 0 0 0 =
M,(D) = @ : G- B
* 0 0 0 = 0 0 0 =
~odn ~Don ~odn

Exercise 2.2.2. Any product []; M, (D;) is semisimple, where D; is a division K-
algebra.

Lemma 2.2.3. Let P and Q be two left A-modules, and suppose that P = @ _, X,
0= @?:1 Y. Let €; : Xj — P be the inclusions, and ; : Q —» Y; be the projec-
tions. Denote Hom = Homy.

1. Define

Hom(X;,Y;) --- Hom(X,,Y;)
M= : : =~ (PHom(X;,Y;).
Hom(X;,Y;) --- Hom(X,,Y,) i

Then M = Hom(P, Q) as A-modules.

2. If P=Q, p=gq, X; =Y, then the isomorphism of the previous point is an
isomorphism of K-algebras : End P = M as rings, where M is endowed with
the usual matrix multiplication.

Proof. 1. Remark that

¢ :Hom(P,Q) — M

mfe - mfeE
fr— :

T fe o WfEp
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is an isomorphism with inverse

v : M — Hom(P,Q)
biy - by
o s = w((Big)ig),
biy - bpg

v((bij)ij):P—Q
q q
(xl,...7xp)»—> Zblmi(xj)""’ bpaj(xj) .
=1 i—1

J

2. The fact that P = Q, p = ¢, X; = Y¥; make the matrix multiplication of M well
defined. The rest is routine verifications.
O

Corollary 2.2.4. 1. Let S and T be two nonisomorphic simple A-modules. Then
Homy (S¥7,T%1) = 0.

2. Let S be an A-module (not necessarily simple). Then Enda (S®7) = M,(Endy S).

Proof. 1. By previous lemma, we have Homy (S¥7, T%%) = M, ,(Homy (S, T)) =

=0
0.

2. By previous lemma.
O]

Theorem 2.2.5 (Wedderburn). Let A be a finite dimensional K-algebra. If A is
semisimple, then A = [[/_; M,,(D;), where D; is a division K-algebra, n; > 1.
Moreover, D?p = Endy S;, where S; is a simple A-module.

Proof. We have that 4A is semisimple, and let A = i, Sl-@”" be its isotypic de-
composition. By the lemma,

End, S7™ 0
Ends A = .
0 End, S&"
= HEndA Si@ni
i=1

>~

M, (End, S;).

r

i=1
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By Schur’s lemma, Endy S; is a division algebra. But we have an isomorphism of
algebras A°® — Ends A. Indeed :
A°° —5 Endy A
b — my, right multiplication by b,
EndyA — A°P

f—fQ),

are mutually inverse. Hence,

r r

A= (Endg A) = (] [ My, (Enda S;))%P = [ [ My, (End, S;)°P .
i=1 i=1 T’
The isomorphism M, (R)°® — M, (R°P) is given by transposition. O

Corollary 2.2.6. Suppose that K is algebraically closed. If A is a semisimple K-
algebra, then A = []i_ M,,(K).

Proof. In this case, Ends S; = K by Schur’s lemma, and so D; = M, (K)°P =
M,,(K) because M, (K) is commutative. O

Corollary 2.2.7. IfA is a simple K-algebra, then A= M, (D), where D = (End4 S)°P,

where S is the unique simple A-module up to isomorphism.

Theorem 2.2.8 (Maschke). Take G a finite group, and K a field. Then KG is
semisimple if and only if charK [|G|, i.e. |G| # 0 in K.

Proof. =—> Suppose that KG is semisimple. Consider

. KG—K

Z Aeg — Z Ag.

geG geG

This makes K into a KG module (with trivial G-action), and € is KG-linear
surjective. By semisimplicity, € splits (as K is projective). Let 6 : K — KG
a KG-linear section of €. Put 6(1) = Y,c5A.8. Take h € G, then ho (1) =
o(hl) =o0o(1), and so

Z Ahg = Z Aeg, VheG.

geG geG
Hence all Ags are equal. Write 6(1) =24 Y,c g Then
l=eo(l)=21e| Y g| =AlG],
g€eG

and so |G| # 0 in K.
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<= Suppose charK /|G|. We prove that every KG-module P is projective. Let

T
0—-N-3M> P— 0 be a short exact sequence. The sequence splits as
a sequence of K-vector spaces and so there exists o : P — M a K-linear

sectior} of 7. Deﬁne T= ‘—é‘dech(gfl -—):P — M. It i§ easy to see
that 7 is a KG-linear section of 7, so the sequence splits, and P is projective.
O

Exercise 2.2.9. Let A be a finite dimentional semisimple K-algebra, and S; be a
simple A-module. Prove that the multiplicity n; of S; in the semisimple decompo-
sition of A is dimp, S;, where D; = End, S;.



Chapter 3

The Jacobson radical

3.1 Definition

Definition 3.1.1 (Composition series). Let M be a an R-module, where R is a ring.
A composition serie of M is a sequence of submodules

O0=M, <M1 <---<My=M

such that every quotient M; /M, is simple. Such a quotient is called a composition
factor.

Lemma 3.1.2. If A is a finite dimentional K-algebra, and M a finitely generated
A-module, then it admits a composition serie.

Proof. Recall that M is finite dimensional. Take a proper submodule N of maximal
dimension. Then M /N is simple. Repeat with N. The process enventually stops as
M is finite dimensional. O

Theorem 3.1.3 (Jordan—-Holder). Let A be a finite dimensional K-algebra, and M
a finitely generated left A-module. Any two composition series of M have the same
length and isomorphic quotients up to permutation. Explicitely, if

0=M, <M, 1 <---<My=M, O0=N, <Ny 1< <Ny=M

are two composition series, then r = s, and there exists 6 € &, such that N;_; /N; =
Mg (iy—1 /Mg (i)

Proof. By induction on dimg M. If dimg M = 1, then M is simple, and the result
is obvious. If M; = Nj, then the result follows by induction hypothesis. Suppose

17
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now that M| # N;. Then M| 4+ N; = M by maximality of M) and N;.

M

M] Nl
> 7
M, M NN; N
| | |

01

Let 0 = Qi < --- < Qo = M| NN be a composition series. The two composition
series of M; give (by induction) r — 1 = k41, and isomorphic quotients. Therefore,
the composition factor of M are, up to isomorphism, {composition factors of M} N
N1} U{M;/M; N N;}. Similarily for N; : its composition factors are, up to iso-
morphis, {composition factors of M; "N, } U{N;/M; N N;}. Then the factors of
the first series for M are, up to isomorphism {composition factors of M; NN, } U
{M/M\,M,/M; NN, }. For the second series, we have {composition factors of M; N
N]}U{M/Nl,N1/M1 ﬂN]}. Moreover, M/M1 g]\71/1\/[1 NNy, andM/N1 ng/Ml N
Ni. So the two composition series have the same factors. 0

Corollary 3.1.4. There are finitely many simple A-modules, up to isomorphism.

Proof. 1t S is simple, then S = A/J, for some maximal ideal J. Then S is a com-
position factor of the following composition series of 0 < --- < J < A. However, A
only has finitely many composition factors. O

Definition 3.1.5 (Jacobson radical). Let A be a finite dimensional K-algebra, and
M a finitely generated A-module.

1. The Jacobson radical of M, written J(M), is the intersection of all maximal
submodules of M.

2. The Jacobson radical of A is J(A) = J(4A), the intersection of all maximal
left ideals.

Example 3.1.6. If M is semisimple, then J(M) = 0. Indeed, M = €;S;, and so
@i Si is a maximal submodule. Hence J(M) < (;;.;Si = 0.

3.2 Caracterisations

Propositions 3.2.1. 1. LetI be aleftideal of A. Then I is maximal if and only if
there exists S a simple module, and s € S, s # 0 such that [ = Ann(s), where
Ann(s) ={a € A | as = 0} is the annihilator of s.
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2. J(A) = Ns simpte ANN(S), where Ann(S) = {a € A | aS = 0} = \;cs Ann(s) is

3.

Proof.

2.

3.

the annihilator of S.
J(A) is a two sided ideal.

1. A/I is simple, and so I = Ann(1), for 1 € A/I. Conversely, if S is
simple, s # 0, then As = S, and so A/ Ann(s) = S using the first isomorphism
theorem for the map ¢ : A — S,a —— as.

We have

JA= [ I

I max. left ideal

= ﬂ ﬂ Ann(s).

S simple 0#s€S
[
=Ann(S)

Leta € J(A), and b € A. Let S be a simple module. Then abS = 0, as bS is

either S or 0. Hence, ab € Ann(S), for all simple module S, and so ab € J(A).
O

Proposition 3.2.2. Let I be a left ideal of A. Then I < J(A) if and only if 1 +1 < A*

Proof. = a€l<J(A), and so a € m, for every maximal ideal m of A, and so

1+a ¢ m (otherwise, 1 € m). However, an element is non left invertible
if and only if it is contained in some (without loss of generality maximal)
left ideal. So 1+ a is left invertible : Ju € A such that u(14a) = 1. Now
u=1—ua,and —ua €I, as I is a left ideal. The same argument applied to ua
shows that —ua is left invertible : Jv € A such that v(1 —ua) = 1. However
1 —ua = u, and so vu = 1. Therefore 1 +a = vu(1+a) =v, and so 1 +a has
right inverse u.

Let m be a maximal left ideal of A. If a ¢ m, then Aa+m = A, because m is
maximal. So ba+m =1, forsome b € A, m € m. Hence 1 —ba = m € m, but
1 —ba € A* as —ba € I, which is absurd. Therefore a € m, and this holds

for every maximal left ideal m, so a € J(A).
O

i L > = 3.2.3. Let A be a finite dimensional K-algebra, and M a finitely
generated left A-module. Then J(A)M = M, then M = 0.

Proof. Let my,...,m, be a minimal set of generators of M. So M =Y ;Am,;. Since

J(A)M = M, the element m, can be written m, = Y a;m;, with a; € J(A). There-

fore aymy +---+a,—ymy—y = (1 —a,)m,. So M =Y ,;_,a;m;, a contradiction with
——

invertible

minimality of {m;};<i<,-. O
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i L > =< 3.2.4 (Alternate form). Let A be a finite dimensional K-algebra,

M a finitely generated left A-module, and N <M. If J(A)M +N = M, then N = M.

Proof. See exercise 2 from sheet 6. O

Theorem 3.2.5. Let A be a finite dimensional K-algebra. Then J(A) is the smallest
two sided ideal with semisimple quotient. Explicitely :

1. AJJ(A) is semisimple,
2. and if A/I is also semsimple, with I a two sided ideal, then J(A) < I.

Proof. We claim that J(A) is an intersection of finitely many maximal left ide-
als. Let I = ();m; be a finite intersection of maximal left ideals, with codimg I =
dimg A —dimg / as large as possible (bounded by dimg A). If m is a maximal left
ideal, then /Nm is a finite intersection with larger codimension, and so by maxi-
mality of codimg / and m, we have I Nm = I, hence I < m. This argument applies
for every left ideal m, and so J(A) <1 < J(A), which proves the claim.

1. Now, J(A) =, m;. So the obvious homomorphism A/J(A) — @;A/m; is
injective. Each summand of the latter is simple, so the sum is semisimple.
Therefore, A/J(A) is isomorphic to a submodule of a semisimple module, so
it is itself semisimple.

2. Let I be a two sided ideal such that A/I = @, S; is semisimple. Note that
Ann(A/I) =1, and so I < Ann(S;). Hence, J(A) <.

O
Corollary 3.2.6. A is semisimple if and only of J(A) = 0.
Example 3.2.7. Z is not semisimple, but J(Z) = 1, prime Zp = 0.

Theorem 3.2.8. Let A be a finite dimensional K-algebra. Then J(A) is the largest
two sided nilpotent ideal. Explicitely

1. J(A) is nilpotent,
2. ifl is a two sided nilpotent ideal, then I < J(A).

Proof. 1. Consider a composition series 0 = M, < --- < My = A. Then every
M; is a left ideal. Since M;/M; is simple, then J(A)M;/M;;; = 0, hence
J(A)M; < M;,,. Therefore

JAA=JA)My<JA) " 'M; <--- <M, =0.
— (A)r
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2. Let S be a simple A-module. Then IS < S. If IS = S, then ["S = S, and
for n large enough, I" =0, so § = 0, a contradiction. So IS =0. So [l <
ﬂS simple Ann(S) = J(A)

]

Example 3.2.9. Take A = K[r]/(¢"), then J(A) = (). It is obviously nilpotent, and
A/J(A) = K is semisimple.

Proposition 3.2.10. Let M be a finitely generated A-module, where A is a finite
dimensional K-algebra.

1. If N < M such that M /N is semisimple, then J(M) < N.

3. M/J(M) is semisimple.

Proof. 1. If M/N is semisimple, then M /N = @, S;, and so J(M/N) = 0 (see
example 3.1.6). S0 (y<7 max. submod. L =N. S0 J(M) <N.

2. If L < M is a maximal submodule, then J(A)M/L = 0, as M /L is simple.
So J(A)M < L. Therefore J(A)M < (1 max. submod. L = J(M). Conversely,
M/(J(A)M) is aA/J(A)-module. The latter algebra is semisimple, and so is
M/(J(A)M) = @;S;, where S; is a simple A/J(A)-module, hence a simple
A-module '. So M/(J(A)M) is a semisimple A-module. By previous point,
J(M) < J(AM.

3. Already proved.

3.3 Local rings

Definition 3.3.1 (Local ring). Let R be a ring. Then R is local if R has a unique
maximal left ideal.

Lemma 3.3.2. Let R be a local ring, and let J be its unique maximal left ideal.
Then :

1. Jis two sided.
2. J=R\R*.

3. R/J is a division ring.

I'That trick wouldn’t work for an arbitrary restriction of scalars
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Proof. 1. If b € R\ {0}, then Ann(b) is a proper left ideal, as it doesn’t contain
1, s0 Ann(b) < J. If Jb £ J, then we would get Jb = R. So b is left invertible,
by an element a € J. Then (1 —ba)b =b—bab=0. So 1 —ba € Ann(b) < J.
ButacJ,sol =1—ba+ ba € J, which is absurd.
5

2. If r € R\ R*, then r is contained in a proper ideal, namely (r). So it is
contained is a maximal ideal (using Zorn’s lemma), which nessecesarily is
J. SoreJ,and R\ R* CJ. Conversely, J cannot have any left unit (as it is
a left ideal), nor right unit (as it is a right ideal), hence the equality.

3. Obvious.
O

Lemma 3.3.3. Let R be a ring. Suppose that every element of R is either invertible
or nilpotent. Then R is local.

Proof. Recall that an invertible element cannot be nilpotent. Take J the set of all
nilpotent elements of R. Let a € J and b € R. The ba is a zero divisor : ba-a"~' =
ba" = 0, where n is the least integer such that @" = 0. So ba is not invertible, hence
nilpotent, hence ba € J. Let a;,a; € J. Suppose a; +a> € J, hence invertible. So
xay +xay = 1, for some x. Note that xa; and xa, commute (as r and 1 — r always
commute, for any r € R). Let n; and n, be integers such that (xa;)" = 0, and
N = ny +ny. We can use Newton’s formula (as xa; and xa, commute) :

N
1= (xa; +xa)N =) <12]> (xay ) (xax)N,

i=0 _

indeed, we ecessarily have that i > n; or N —i > np. We have an absurdity, so
a)+ay € J. Hence, J is an ideal, and J = R\ R*. So J is the unique maximal ideal,
and R is local. O

Exercise 3.3.4. Let A be a finite dimentional K-algebra. Then A is a local if and
only if A/J(A) is a division algebra.
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Indecomposable modules

4.1 The Krull-Remak-Schmidt decomposition theorem

Definition 4.1.1 ((In)decomposable module). Let A be a finite dimentional K-
algebra, where K is a field. A left A-module M is decomposable it M = M, & M>,
for M|, M, < M non zero. It is indecomposable otherwise, if it is not null.

Example 4.1.2. Any simple module is indecomposable.

Exercise 4.1.3. If conversely every indecomposable A-module is simple, then A is
a semisimple algebra.

Remark 4.1.4. Every finitely generated A-module can be decomposed as a direct
sum M = €, M; of indecomposable submodules.

Lemma 4.1.5 (Fitting’s lemma). Let A be a finite dimentional K-algebra, and M
a finitely generated A-module. Let ¢ € Endg M. Then there exists n € N such that
M =ker¢" &im¢”".

Proof. Since dimg M is finite, the following two series must stop :
M>im¢ >im¢>>--->im¢" =im¢ "t = ...

0<ker¢ <ker¢?<---<ker¢"=ker¢""!'=...,

and im ¢"** = im ¢", ker ¢"** = ker¢” for all k € N. Let x € M. Then ¢"(x) =
¢>"(y) for some y € M (as im¢" = im¢>"). So ¢"(x — ¢"(y)) = 0, therefore x =
0" (y)+x—9¢"(y). So M =im¢" +ker¢”. Let x € im¢@” Nker¢”. Then x = ¢"(z)
—— ——

€im ¢" cker ¢

for some z € M. Therefore 0 = ¢"(x) = $>"(z). So z € ker¢*" = ker¢", hence
x =0. Hence im¢"* Nker¢" =0, and we get M = ker ¢" Gim¢". O

Theorem 4.1.6. Let A be a finite dimentional K-algebra, and M a finitely gener-
ated left A-module. Then M is indecomposable if and only if Ends M is local.

23
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Proof. = Suppose M indecomposable. By Fitting’s lemma, there exists an inte-
ger such that M = im ¢" @ ker ¢”, for a given ¢ € Endy M. However, M is in-
decomposable, si one of the summands is zero. If ker ¢ =0 and im ¢" = M,
then ker ¢ = 0, and im ¢ = M, and so ¢ is an automorphism. If ker ¢"* = M,
then ¢ is nilpotent. By lemma 3.3.3, we obtain that End4 M is local.

<= Suppose Endgq M local. Let M = M| & M;, and &; : M —» M; — M be the
projections. Then 7r12 = m;, T + m = idy;. Without loss of generality, sup-
pose M # 0, then 7; # 0, and so it is not nilpotent (because it is idempotent).
Hence, 7 is invertible. Then

m=n' n =idy.
~—

Hence 1, = 0, and so M, = 0.

Corollary 4.1.7. A is local if and only if 4A is indecomposable.
Proof. We have End4 (4A) = A°P which is also local. O

Theorem 4.1.8 (Krull-Remak—Schmidt). Let A be a finitely generated K-algebra,
and M a finite dimensional left A-module. Suppose that M = @;_; M; = @’ N},
where all summands are indecomposable. Then r = s, and there exists ¢ € G, such
that M; = Ng ;). In other words, a decomposition into indecomposable modules is
essentially unique.

Proof. We proceed by induction on r. If r = 1, then M = M, is indecomposable,
sos =1, and M| = N;. Suppose r > 2. Let & : M; — M the canonical inclusion,
7; : M —» M; the canonical projection, and 1; : N;j —— M, p; : M — N; the
analogous. Then 7;&; = idyy,, and &7; : M — M is idempotent. Moreover ) ; &; =
idy. Similarily for n; and p;.

The composite M (i> M M M -, M isidy, . Thereforeidy, =3 ;min;p;€ €
Ends M1, and the latter ring is local. So it can’t be that all summands are nilpotent.
Let 1 < j <ssuch that ¢ = mn;p;€ is invertible. Without loss of generality (i.e.
up to permutation), j = 1.

Let o0 = p181¢*1 and B = mm;. The composite M; BN M L M; is idy, .
Moreover af3 is idempotent and not zero (because B(af3) o = idyy, ). It is therefore
not nilpotent, so it is invertible, as Ends N; is local. Denote ¥ = 3. Then v =
y 'y =y ly=idy,. So @ and B are mutually inverse, hence M| = Nj.

Now, @j_, M; = @’_, N;, and we apply the induction hypothesis. O

Remarks 4.1.9. 1. The Krull-Remak—Schmidt theorem fails for some other rings,
e.g. for ring of integers in a number field (a finite field extension of Q), e.g.

Z[V/5].
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2. But it works for PIDs (yayyyy).

3. If A is a finitely generated K-algebra, and M is a finite dimensional left A-
module, then we know that dimg M < oo. Therefore a decomposition into
indecomposable always exists (by induction).

4.2 Idempotent elements

Definition 4.2.1 (Orthogonal/primitive idempotents). Let R be aring, and e, f € R
two idempotents. They are called orthogonal if ef = fe = 0. An idempotent e € R
is called primitive if e cannot be decomposed as a sum of two nonzero orthogonal
idempotents.

Example 4.2.2. In any ring R, and for all idempotent ¢ € R, we have that e and (1 —
e) are orthogonal idempotents. Hence, if e # 0,1, e+ (1 —e) = 1 is an orthogonal
decomposition, and 1 is not primitive.

Lemma 4.2.3. Let R be a ring.

1. If RR = D_, Q;, then Q; = Re;, where ¢; is idempotent, and Y ;e; = 1 is an
orthogonal decomposition.

2. Conversely, any orthogonal decomposition of 1 into idempotents ey, ... e,
leads to a decomposition gRR = @!_ Re;.

3. Ife € Ris idempotent, then Re is indecomposable if and only if e is primitive.

Proof. 1. There is a unique way of writing 1 = Y ;e;, where e¢; € Q;. Then
ej=Y,ejei, and so eje; = 0 if i # j, and e? =e;. So {e;}; is a family of
~~
€0i
orthogonal idempotents. Take x € Q;. Then x = x1 =} ; xe;, and so xe; = 0
ifi # j,and xe; = x. So Q; = Re;.

2. Wehave 1 =Y ,¢;,sS0R=R1 =) ;Re;. Letx € RejﬂZ#jRe,-. Then x = xe;,
andx =Y ,.; jiej. Sox =xe; =Y, jieje; = 0.

3. If e=u+v is a decomposition into orthogonal idempotents, then Re = Ru @
Rv. Conversely, if Re = U @V, then e = 7y (e) + my(e), and by the same
argument as in point 1., those two terms are orthogonal idempotents.

O

Corollary 4.2.4. Let A be a finite dimentional K-algebra. Let P be a finitely gen-
erated projective left A-module.

1. P is indecomposable if and only if P = Ae, where e is a primitive idempotent
of A.
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2. There are finitely many indecomposable projective modules up to isomor-
phism.

Proof. First, decompose 4A. By the previous lemma, A = @], Ae;, where 1 =
Y ;ei is an orthogonal primitive idempotent decomposition. Such a decomposition
must exist because of the Krull-Remak—Schmidt theorem.

1. P is a direct summand of A®” which decomposes as @ ,(Ae;)*". By the
Krull-Remak—-Schmidt theorem, P = Ae; for some i.

2. We know that A®” = P? | (Ae;)®", and so any indecomposable projective
module is isomorphic to Ae;, for some e;.

O

Theorem 4.2.5. Let A be a finite dimentional K-algebra. There is a bijection

conjugacy classes of primitive iso. classes of indecomposable
idempotents in A projective left A-modules

mapping the class of a primitive idempotent e € A to the isomorphism class of Ae.

Proof. We have to check that this mapping is well defined. It is clear that any
conjugate of an idempotent (resp. primitive idempotent) is again idempotent (resp.
primitive idempotent). Let e, f € A be conjugate primitive idempotents. There
exists u € A* such that e = ufu~'. Define m, : Af —> Ae : x — xu, and m,; :
Ae — Af similarily. Then m, and m,-1 are mutually inverse, and so Ae = Af.
Then, the mapping is surjective by the previous corollary. It remains to show
injectivity. Let e, f € A be primitive idempotents such that Ae = Af. We have
A=AeDA(l—e) ZAfDA(1—f). SoA(l —e) = A(1 — f) by cancellation (ex-
ercise 2, sheet 8). Therefore there exists an isomorphism ¢ : A — A such that
0(Ae) =Af,and 9(A(1 —e)) = A(1 — f). However, ¢ must be of the form ¢ = m,,
(right multiplication by u), for some u € A*. Then u~'eu is an idempotents, and
Auleu = Aeu= ¢(Ae) =Af,and A(1 —u"'eu) = Au' (1 —e)u= ¢p(A(1 —e)) =
A(1—f). Then ms and m,1,, are the identity on A f, and zero on A(1 — f). There-
fore my =m,-1,, onA =Af®A(1— f). In particular, they coincide on 1, and so
f=uleu. O

Example 4.2.6. 1. Take A to be semisimple. By the Wedderburn theorem, A ==
[ M,,,(D;), where D; is a division ring. Take

1 0 --- 0
00 --- 0
ei=| . . .| €M, (D).
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It is a primitive idempotent. Moreover, as A is semisimple, any indecompos-
able projective is simple. Hence

Ae; = Mn,- (Di)e,- = . ~ pt

is simple. See exercises.

2. An example with infinitely many indecomposable modules. Define the alge-
braA =K[X,Y]/(X?,Y? XY). Lets=X,t =Y. Then dimg A = 3, with basis
{1,s,t}, and multiplication s*> = t> = st = ts = 0. Clearly, J(A) = Ks ® K¢,
as it is the largest nilpotent ideal. Then, A/J(A) = K. We have only one
simple module S = A/J(A), one idempotent, namely 1, which is also prim-
itive. Therefore, A is indecomposable projective. Fix A € K*, and define a
2-dimentional A-module M, with basis {m,n} as follows :

sm=n, sn=20

tm=An, tn=0.

Let Ny =J(M)) = J(A)M; = Kn. We have N) = S, and M, /N, = S, and so
there is a short exact sequence

0—S— M —S—0.

The rest of the proof that M, is indecomposable is left as an exercise. Next,
myg : My — M), : x — sx induces a linear map 7, : M), /N) — Ny, : sX —
x. Moreover ms(m) = n, and so iy is an isomorphism. Similarily, m; :
M), — M, induces a K-linear isomorphism 7, : M; /N;, — N, with 7, (m) =
An. Now the composite ¢,

_ 1 _
Ny =J(My) Z My /T (M) 5 Ny,

maps 7 to A~!'n. The map ¢, is intrisically defined by M;, because it is
g, . Assiciated to M; we have a intrisically defined map ¢, : N; =
Kn — N, which is multiplication by A~'. So from M}, one can recover
A. Therefore if My = My, then A = u. Finally, if K is infinite, we have
infinitely many non isomorphic indecomposable modules.



28

CHAPTER 4. INDECOMPOSABLE MODULES



Chapter 5

Lifting idempotents

Definition 5.0.7 (Primitive orthogonal decomposition). Let R be a ring. A primi-
tive orthogonal decomposition of an idempotent e € R is a decomposition of e as a
sum of primitive pairwise orthogonal idempotents.

Lemma 5.0.8. Let A be a finit dimentional K-algebra, e € A idempotent. Consider
the K-algebra eAe (with identity e). Then J(eAe) = eJ(A)e.

Proof. First, eJ(A)e CJ(A),eAe. Next, if a € J(A) NeAe, then a = ebe with b € A,
and so a = eae. Therefore a € eJ(A)e. Hence, eJ(A)e = J(A) NeAe.

Moreover, J(A)N = 0 for some lage enough N € N, so (eJ(A)e)" = 0. So the
two sided ideal eJ(A)e of eAe is nilpotent, hence eJ(A)e C J(eAe). Next, AJ(eAe)A
is the two sided ideal of A denerated by J(eAe). We have

(AJ(eAe)A)* = AeJ(eAe)eAel (eAe) eA.
:J(:;%)2

Similarily, (AJ(eAe)A)" = AeJ(eAe)"eA, hence, AJ(eAe)A is nilpotent, and so
AJ(eAe)A C J(A). Therefore, J(eAe) C J(A), hence J(eAe) C eJ(A)e.
Finally, J(eAe) = eJ(A)e. O

Theorem 5.0.9 (Lifting stuffs). Let A be a finite dimentional K-algebra, A =
A/J(A), and write a € A for the class of a € A in A.

1. Lifting invertibility : a € A is invertible if and only if a is invertible. In other
words, there is a short exact sequence of groups

{1} —1+J(A) — A" — A — {1}

2. Lifting idempotents : For any idempotent g € A, there exists an idempotent
e €A suchthate =g.

3. Lifting conjugacy of idempotents : Let e, f € A be two idempotents, if € and
f are conjugate in A, then e and f are conjugate in A. More precisely, if
f=ueia ", then ii can be lifted as u € A* such that f = ueu™". In particular,
ife=f, then there exists u € 14 J(A) such that f = ueu™".
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4. Lifting primitivity : Let e € A be idempotent. Then e is primitive in A if and
only if & is primitive in A.

5. Lifting idempotent decompositions : Let e € A be idempotent, and e =Y ; g;
be a primitive orthogonal decomposition of E in A. Then there exists e; € A

with e; = g;, and such that e =Y ; e; is a primitive orthogonal decomposition
of ein A.

Proof. 1. If a € A is invertible, then clearly a is also invertible. Conversely,
take a € A such that a is invertible, and suppose that a is not invertible. If
a is not in a maximal left ideal, then Aa = A, and similarily on the right.
If Aa = aA = A, then db,c € A such that ba = ac = 1, so a is invertible,
a contradiction. Therefore, a belongs to a maximal left ideal m C A. By
definition, J(A) C m. Hence M =m/J(A) is a maximal ideal in A, and a € .
Consequently a is not invertible, a contradiction.

Finally, the projection A* — A is surjective, with kernel 1 +J(A).

2. Let g € A be an idempotent. By surjectivity of the projection A —» A, there
exists a; € A such that a; = g. Let by = a% — a;. Define inductively a, =
ap 1 +by1—2a, 1b, 1, and b, = a> —ay.

We show by induction that b, € J(A)". For n = 1, remark that b; = g — g =
0, and so by € J(A). We use the fact that a2 = a,, + b,,, and also that a, and
b, commute (as b, = a> — a,). By induction, assume that b, € J(A)". Notice

that b2 € J(A)*" C J(A)"*!. Compute a,,,; modulo J(A)"*!.
a%H = (an+b, — Zcznbn)2
= a? +b? +4d°b? + 2a,b, — 4a’b, — 4a,b?

= a2+ 2a,b, — 4a’b, mod J(A)""!
= a, + by +2a,b, — 4(a, + b,)b, mod J(A)"!
=a,+b,—2a,b, mod J(A)"+1
= apy mod J(A)"1.

Therefore, aﬁﬂ =a,;1 modJ(A)""! andso b, = aﬁﬂ — a1 €J(A),

thus proving the claim.

As J(A) is nilpotent, there exists, N € N such that J(A)¥ = 0, and so by =
a,z\, —ay =0, and ay is idempotent. By induction, on can easily prove that

ay = g, which proves the statement.

3. Lete, f € A be two idempotents such that f = e~ ! for some it € a*. Then
i lifts as u € A* by part 1. Denote by & = ueu™". It is an idempotent, and
h=f Letv=1—h—f+2hf Thenv=1—h—f+2fh=1.Sovel1+J(A)
is invertible. Compute

hw=h—h—hf+2hf=hf

vf = f—hf—f+2hf =hf.
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Sohv=vf,andueu ' =h=vfv~!, and e and f are conjugate.

4. Let e € A to be an idempotent. If e is not primitive, then e = f| + f5, for
f1,f> € A orthogonal idempotents. Remark that fi,/, & J(A) as J(A) is
nilpotent. So fi,f> # 0, and as &€ = f; + f> is an orthogonal idempotent
decomposition, we have that é is not primitive.

Conversely, if € is not primitive, then & = f; + f, for f, /> € a orthognal
idempotents. Consider the K-algebra eAe. By previous lemma, we have
eAe = eAé. Notice that f|, f> € éAé. By part 2, fi can be lifted as an idem-
potent f; € eAe. Define f> = e — fi, which lifts f>. Then e = f| + f> is an
orthogonal decomposition of e, and it is not primitive.

5. Lete € A be an idempotent, and ¢ = };_, g; be an orthogonal decomposition.
We prove the statement by induction on r. If r = 1 there is nothing to prove.
We work in the K-algebra eAe. We have that g| € éae as before, and we can
lift it as an idempotent f; € eAe. Then e = f} + (e — f1) is an orthogonal

r

decomposition (in eAe). Hence e = g; + Z gr. By induction hypothesis, the

i=2
——

——f
decomposition e — f; =Y\, g; lifts as an orthogonal decomposition e — f; =
Yi ,fi.- Soe=Y/_, fiis an orthogonal decomposition liftinge =Y_, g;.
O

Theorem 5.0.10. Ler A be a finite dimentional K-algebra.

1. If e € A is a primitive idempotent, then the indecomposable projective A-
module Ae has a unique maximal submodule J(A)e. In other words, Ae has
a unique simple quotient, namely Ae/J(A)e = Aé.

2. Let e, f € A be two primitive idempotents, then Ae = Af if and only if Aé =
Af.
3. There is a bijection

{ iso. classes of } PN { iso. classes of }

indec. projective A-mods. simple A-mods.

mapping the class of Ae to the class of Ae.

Proof. The K-algebra projection map A —+ A sends Ae to Aé. If e is primitive,
then so is €, by previous theorem. So Aé is a projective indecomposable A-module.
However, A is semisimple. So Aé is simple as a A-module, and also as a A-module
(with J(A) acting as zero, the classical restriction of scalars). Moreover, any simple
A-module has this form, because J(A) must act by zero on it (by definition of the
Jacobson radical).
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1. We have seen thatJ(A)e is a maximal submodule of Ae, because Aé is simple.
Let M be a maximal submodule of Ae. Then Ae/M is simple, therefore
J(A) (Ae/M) =0, and so J(A)Ae < M, that is J(A)e < M < Ae. Since J(A)e
is maximal, we have M = J(A)e.

2. We use the bijection of theorem 4.2.5. We have Ae = Af if and only if e and
f are conjugate in A, if and only if & and f are conjugate in A, if and only if
Ae=Af.

3. This is a consequence of the previous points.
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The Wedderburn—Malcev
theorem

Definition 6.0.11 (Split algebra). Let A be a finite dimentional K-algebra. It is said
to be split if

1. it is semisimple,
2. Endy S =K, for every simple A-module S.

Remark 6.0.12. Take A a semisimple K-algebra. The by Wedderburn theorem, we
have that

A= M,, (D).
i
Then A is split if and only if D; =K, since D; = (Endy4 S;)°P.

Examples 6.0.13. 1. If K is algebraically closed, then every semisimple alge-
bra is split, by Schur’s lemma.

2. Consider RQs, the R-group algebra of the quaternion group of order 8. Then
RQg = R* x H, which is non split (see exercise 2 of sheet 5).

Lemma 6.0.14. Let A = A X Ay be a direct product of two finite dimentional K-
algebras. Let e € A be a primitive idempotent.

1. Then either e = (e1,0), where ey € Ay is a primitive idempotent, or e =
(0,e2), where ey € A, is a primitive idempotent.

2. A primitive orthogonal decomposition of 1 € A is obtained by a primitive
orthogonal decomposition of 1 € Ay and 1 € A;.

Proof. 1. Lete € (e1,ey) € A be a primitive idempotent. Then e?> = e, 50 e; and
ey are idempotents, and so are (e1,0) and (0,e2). Moreover, e = (e1,0) +
(0,e7) is an orthogonal decomposition, so either e; = 0, or e; = 0.

33
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2. Clear since 14 = (14,,14,) = (14,,0) + (0, 14,) is an (not necessarily primi-
tive) orthogonal decomposition.
O

Lemma 6.0.15. Let A = M,,(K) be a split simple algebra over K.

1. An idempotent e € A is primitive if and only if e is a projection matrix onto
a one dimentional subspace of K".

2. Every primitive idempotents are conjugate.

3. The number of primitive idempotents in a primitive orthogonal decompo-
sition of Iy is n. More precisely, I, =Y} E; j. By part 2, there exists
U; € GL,(K) such that E; j = Uj*lEl’lUj.

4. The elements {Uj*IELlUk}form a K-basis of M,,(K). If the U; are transpo-
sition matrices, then the basis is precisely the canonical basis.

Proof. Already done in an exercise sheet. For point 4. : if U; are permutation
matrices, then the result is clear. If not, then

(U]_]El,lUk)(Up_lEl,qu) = Uj_lUk(Uk_lEllek)(Up_lEllel’)UP_]Uq
= UjilUkEk,kEp,PUpiqu

is either O os another element of the set. We hence have an orthogonality relation.
O

Theorem 6.0.16 (Wedderburn—Malcev). Let A be a finite dimentional K-algebra
such that AJJ(A) is a split algebra. Let w: A —» A/J(A) : a — a be the quotient
map.

1. There is a semsimple subalgebra S < A such that 7| is an isomorphism. In
other words there is a section 6 : AJJ(A) — A of m.

2. If T < A is another semisimple subalgebra such that |7 is an isomorphism,
then T and S are conjugate. In other words, the section of T is unique up to
conjugacy.

Remark 6.0.17. Let A be a finite dimentional K-algebra. Then A is separable if
1. A is semisimple,

2. consider the Wedderburn decomposition A = [[; M,,,(D;), then Z(D;) /K is a
separable extension.

The Wedderburn—-Malcev theorem also holds for algebra A such that A/J(A) is
separable.
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Symmetric algebras

7.1 Definition

Definition 7.1.1. Let A be a finite dimentional K-algebra. Let M be a finitely
generated left A-module. The dual of M is defined as M* = Homg (M, KK) endowed
with the following structure of right A-module : if f € M* and a € A, then

fa:M —K
mv— f(am).

Proposition 7.1.2. Let A be a finite dimentional K-algebra. The following are
equivalent :

1. There is an isomorphism of right A-modules ¢ : Ay — (4A)* which is sym-
metric : ¢(a)(b) = §(b)(a), for every a,b € A.

2. There exists a symmetric non degenerate bilinear form B on A that is symmet-
ric and associative, i.e. such that B(ab,c) = B(a,bc), for every a,b,c € A.

3. There is a linear form A : A — K which is symmetric, i.e. A(ab) = A(ba),
Va,b € A, such that ker A doesn’t contain any right ideal of A.

Proof.

1. <= 2. From a symmetric ¢ : Ay — (4A)* we can construct a symmetric 3 defined
as B(a,b) = ¢(a)(b). Then, ¢ is an isomorphism if and only if B is non
degenerate (as we are in finite dimentional vector spaces). The associativity
is routine verifications.

2. <= 3. If B : A x A — Kis symmetric associative, then define A by A (a) = f(a,1).
Since f is associative, we have A (ab) = B(ab,1) = B(a,b). Since B is sym-
metric, A is too. Conversely, if A is linear symmetric, then define B (a,b) =

35
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A(ab). Since A is symmetric, 8 is too. Moreover, f3 is associative because
multiplication in A is too. Consider the following :

B(a,x)=0 VxeA
<= A(ax) =0 VxeA
<= aA <kerd
<= kerA cont. a right. ideal. cont. a.

Then it is clear that f is non degenerate if and only if ker A doesn’t contain
any right ideal.

O

Definition 7.1.3 (Symmetric algebra). Let A be a finite dimentional K-algebra.
Then A is called symmetric if one (and hence all) of the conditions of proposi-

tion 7.1.2 hold. If this case, the linear form A is called a symmetrising form'. A

symmetrizing form may not be unique.

Examples 7.14. 1. A =M, (K) is symmetric with symmetrizing form

tr: M,(K) — K.

Indeed, we know that tr is linear and that tr(XY) = tr(YX), VX,Y € M,(K).
Next, we have a canonical basis {E, ;}, 4 of M,(K). In order to prove that
the associated bilinear form (X,Y) = tr(X,Y) is non degenerate, it suffices
to find a dual basis. Here it is {E, ,},, because E, jE.; = 0, ,E,;, and
therefore

B(Ep4Ers) = tr(EpgErs) = 84.r8p.s.
Then clearly, 8 is non degenerate. Remark that a typical right ideal in M, (K)
0

has form | K" | £ kertr.

0

. Let G be a finite group. The group algebra KG is symmetric with symmetriz-
ing form
A:KG—K
1 ifg=1
8 { 0 ow.

I“forme symmétrisante” in french
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Then A (gh) = 1 if and only if g and & are mutually inverse. Hence A (hg) = 1
if and only if g and h are mutually inverse. By linearity, A is symmetric. The
corresponding bilinear form is given by

B :KGxKG— K

(o h)H{ 1 ifg=nh""

0 ow.

Remark that {g~!},cc is a dual basis of {g}4cc, and hence f3 is non degen-
erate.

7.2 Injective modules

Lemma 7.2.1. Let R be a ring and let I be a finitely generated left R-module. The
following are equivalent :

1. For any injective homomorphism j : L — M between finitely generated R-
modules, and for any homomorphism ¢ : L — I, there exists lift § : M — I
such that the following diagram commutes :

2. Any injective homomorphism I — M admit a retraction.

Proof.

1. = 2. Take L=1and ¢ =id;.

2. = 1. With a huge loss of generality, we consider R to be a finite dimentional K-
algebra. Take L, M, j and ¢ as in point 1. and apply duality :

#k

J

L* M*
* ///1
¢ I L

I*.

Then I* is projective, j* is surjective, and there exists 51 lifting ¢*. Since we

consider finite dimentional modules over K, dualization (—)* is involutive.
—~x%

Hence ¢* lifts (¢*)* = ¢.
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O]

Definition 7.2.2 (Injective module). A R-module / satisfying one (and hence all)
condition of lemma 7.2.1 is called an injective module.

Lemma 7.2.3. Let M be a finitely generated left A-module. Then M is projective if
and only if M* is injective as a right A-module.

Proof. Easy. O

Exercise 7.2.4. If A is a symmetric algebra, the isomorphism 4A = (A4)* of left
A-modules is also an isomorphism of right modules.

Proposition 7.2.5. Let A be a finite dimentional symmetric K-algebra. Then pro-
Jjective and injective modules coincide. We also say that A is self-injective.

Proof. Ay is a free right A-module hence projective. Therefore (A4)* is an injective
left A-module. Since (A4)* = 4A we have that 4A is injective. Then (4A)%" is
injective (exercise), and any direct summand P of (4A)®" is injective (exercise
again). Hence all projective modules are injective. Dualize for the converse. O

Definition 7.2.6 (Socle of a module). Let M be a finitely generated A-module.
Then the socle of M, written soc M is the sum of all simple submodules of M. It is
also the largest semisimple submodule of M.

Remark 7.2.7. 1. We know that indecomposable projective A-modules have a
unique simple quotient. By duality, and using exercise 1 of sheet 12, we have
that any indecomposable injective submodule have a unique simple submod-
ule. Moreover, we have a bijection

iso. classes of iso. classes of
indec. injective A-mods. simple A-mods.
which associates to an injective module / its socle soc/.

2. If A is symmetric, then projective and injective modules coincide, and there-
fore any projective indecomposable module P have both a unique simple
quotient P/J(P) and a unique simple submodule soc P.

Theorem 7.2.8. Let A be a symmetric finite dimentional K-algebra, and let P be
an indecomposable projective A-module. Then P/J(P) = soc P.

Proof. We know that P = Ae, where e is a primitive idempotent of A, and that
P/J(P) = Ae/J(A)e. The socle socAe is a left ideal of A, hence not contained
in kerA, where A : A — K is a symmetrizing form. Let a € socAe be such that
A(a) # 0. We have a = ae, therefore 0 # A (a) = A(ae) = A(ea), and ea # 0.

¢ : Ae — socAe

xe — xea.
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Clearly, ¢ is a homomorphism of left A-modules. It is non zero as ¢(e) = ea #
0. As socAe is simple, we have that ¢ is surjective. Moreover, ¢ induces an
isomorphism Ae/ker@ = socAe. As Ae have a unique simple quotient, we have
that Ae/J(A)e =2 Ae/ker ¢, and so P/J(P) = socP. O

Example 7.2.9. Let Q be a quiver without oriented cycles, so KQ is finite dimen-
tional.

e Trivial case : no arrow. Then KQ = K", where n is the number of vertex of
Q. Hence KQ is split semisimple, hence symmetric (exercise 5.a, sheet 12).

e Non trivial cases : there is at least one arrow. We want to prove that KQ
isn’t symmetric. Let v be the target of an arrow, and [, be the empty path
at v, which is a primitive idempotent of KQ. Then P, = K@/, is projec-
tive indecomposable (in fact, it is spanned by all paths ending at v). Also,
P,/J(P,) =KQl,/J(KQ)l, is a one dimentional simple module generated by
the class of /,,.

Let u be the origin of a maximal path 7 ending at v. Then there is no arrow
with target # be maximality. Therefore KQ/, = KI, is simple. There is a
homomorphism of left KQ-modules

my - KQOI, = Kl, — KQI,
ly— .

Since KI, is one dimentional and /,w # 0, we have that m, is injective.
Therefore the simple module KQ/,, = Kl, corresponding to I, is isomorphic
to a submodule of the projective module KQ/, corresponding to /,. Hence
KQI, has a simple submodule K/, in its socle, and this simple submodule
is not isomorphic to KQI,/J(KQIl,). By the previous theorem, KQ is not
symmetric.
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Finite representation type

8.1 Definition

Definition 8.1.1. Let A be a finite dimentional K-algebra. We say that A has fi-
nite representation type if there are finitely many isomorphism classes of finitely
generated indecomposable left A-modules.

Lemma 8.1.2. A = K[X]/(X") is symmetric, where n > 1. In particular, sA is an
injective module.

Proof. Let x be the class of X in A, so x* = 0. Obviously, 1,x,...,x""! is a K-basis
of A. We claim that the only ideals of A are Ax!, for 0 < i < n. Indeed, an ideal I of
A has the form I = J/(X"), where J is an ideal of K[X] containing X”. But K[X] is
a PID, and so J = (f), for f € K[X] monic, and f|X". Hence, f = X' for 0 <i <n,
which proves the claim. Define
A:A—K
X — 1.
Clearly, A is symmetric, and ker A doesn’t not contain any nonzero ideal of A. [

Remark 8.1.3. The algebra A = K[X]/(X") is called the algebra of truncated poly-
nomials.

Theorem 8.1.4. A = K[X]|/(X") has finite representation type. More precisely :

1. the only indecomposable A-modules (up to isomorphism) are A /AX', for 1 <
i<n;

2. Ais uniserial, i.e. any module has a unique composition series.

Proof. By induction on n. If n =1, then A = KK, and the result is obvious. Suppose
now n > 2, and let M be a finitely generated A-module.

Suppose that there exists m; € M such that x"~'m; # 0. Then m; generates a
submodule Am; with basis m,xmy,...,x" 'm;. Indeed, if Z;’:_Ol Aix‘m; = 0, then
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XY Aaximy = Aox""'my = 0, and so Ay = 0, and repeat with x"~2, etc. There-

fore Am; is a free module isomorphic to 4A, which is itself injective (by the pre-

vious lemma). Hence Am; is injective as well, and the injection Am; —— M has

a retraction, hence M = Am| & M,. Suppose that there exists my € M, such that

x"~'my # 0. Then by the same argument, we have M = Am; ® Am, ®M3. Contin-
—~ =~

~A =A
uing in this way until the initial assumption is false leads to a decomposition

M=ZAm &---BAm BN,

where N is a submodule such that x*~ !N = 0.

Hence N can be viewed as a B-module, where B = A/Ax"~! = K[X] /(X" V).
By induction, the only indecomposable B-modules are B/Bx!, for 1 <i<n—1.
Therefore N = @,(B/Bx')®i. Clearly, B/Bx' = (A/A"1)/(Ax;/Ax""!) =2 A/AX'.
We view B/x'B as a left A-module (with x,,_1) acting by 0.

This proves that M decomposes as a direct sum of modules of the form A /Ax'.
We need to show that each module A /Ax' is indeed indecomposable. We know that
Endg R = R°P, for any ring R. In particular, we have an isomorphism

Enda(A/Ax;) «— (A4/Ax;)% = A/Ax;
f—r()

mg <—a.

Now A/Ax; = K[X]/(X?) is a local ring with maximal ideal Ax/Ax’ because the

only maximal ideal of K[X] containing X' is (X). Hence, since Ends(A/Ax;) is

local, we have that A/Ax; is indecomposable. This proves that A has finite repre-
sentation type, with n indecomposable modules (up to isomorphism).

For uniseriality', remark that the only ideals of K[X] containing X" are (X") >

-> (X). Therefore, the only ideals of A = K[X]/(X") are A > Ax > --- > Ax"~! > 0.
This proves that 4A is uniserial, and so are any of its quotients A /Ax;.

O

Remark 8.1.5. Ax' is an indecomposable submodule of 4A. It is in fact it is isomor-
phic to A/Ax"~" with
AJAX"TT — AX
I—x

ir—s xt!

P X =0.

lis this even a real word ?
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8.2 Group algebras of finite representation type

Let G be a finite group. Then A = KG is finite dimentional.

1. If charK = 0 or charK = p and p /|G|, then by Maschke theroem, KG is
semisimple. Then every indecomposable module is simple and in particular,
there are finitely many of them, up to isomorphism. Thus KG is of finite
representation type.

2. If charK = p, and if G is a p-group, i.e. |G| = p" for some n € N*, then we
obtain theorem 8.2.2.

3. If char K = p which divides |G|, then some standard method called induction
and restriction allow to pass from a p-Sylow subgroup of G to the whole of
G, and we obtain theorem 8.2.3.

Lemma 8.2.1. Let G be a finite p-group, with p prime.
1. Any maximal subgroup of G is normal and has index p.
2. Ifthere is a unique maximal subgroup, then G is cyclic.

3. If there is at least two distinct maximal subgoups, then G has a quotien
isomorphic to Clz,.

Proof. 1. By induction on n, where |G| = p". If n = 1, then G is cyclic and 1
is the only maximal subgroup, which of course has index p. Suppose n > 2,
and let M be a maximal subgroup. We use the fact that Z = Z(G) is non
trivial (consequence of the class equation). We have two cases :

(a) Z <M, then M/Z is a maximal subgroup of G/Z. Since |G/Z| < |G|,
induction tells us that M/Z is normal, and has index p. It follows that
M is normal in G with index p.

(b) Z L M, then M < ZM, and the later is a subgroup since Z is normal. So
ZM = G by maximality of M. Let g € G, then g=zm withz € Z, m €
M. Then gMg~! = zmMm~'z7! = zMz~! = M. Hence M is normal.
Moreover GM = H is a group without any subgroup apart from 1 and
H. Hence H = C), and M has index p

2. Suppose M is the unique maximal subgroup of G. Let g € G\ M. Then (g)
is not contained in M, hence not contained in any maximal subgoup, hence
(¢) =G, and G is cyclic.

3. Suppose that M; and M, are two distince maximal subgroups of G. Then
M; < MM, < G, and by maximality of M; we have MM, = G. Let N =
M, NM,. By the second isomorphism theorem, we have G/M| = M, /N
and similarily, G/M, = M; /N. The obvious group homomorphism G —>
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G/M; x G/M, = CI% has kernel N. Therefore it induces an injective map
G/N — C>. However |G/N| = p* and so G/N = C>.
O

Theorem 8.2.2. With the assumptions of point 2., i.e. charK = p and G is a p-
group, KG has finite representation type if and only if G is cyclic. More precisely,

1. If G is cyclic, then KG is uniserial and there are |G| indecomposable mod-
ules up to isomorphism.

2. IfGis not cyclic, then KG has a quotient isomorphic to K[X,Y]/(X?,Y?,XY),
which has infinite representation type.

Proof. 1. If G is cyclic, let x = g — 1 € KG, where g is a generator of G, and
define

0 :K[X] — KG
Xr—x=g—-1

It is a surjective algebra homomorphism because ¢(X + 1) =g, ¢((X +
1)) = g¥, and im ¢ contains a basis of KG. Now x”" = (g — 1)7" = g"" —
1 =0, so ker¢ > (X*"), and ¢ induces a surjective algebra homomorphism
A =K[X]/(XP") — KG. We have dimgA = dimg KG = p", so A = KG.
We know by theorem 8.1.4 that A is uniserial and of finite representation
type.

2. Suppose G not cyclic. By lemma 8.2.1, there is a normal subgroup N < G
such that G/N = Clz,. Therefore there is a surjective algebra homomorphism
¢ :KG— K(CIZ,), and we have an isomorphism (same argument as before)

2
K[x,Y]/(x,Y?) — K(C))
X—g—1

Y—h—1,

where g is a generator of C, x 1 and 4 is a generator of 1 x C,. Now has a
quotient B = K[X,Y]/(X2,Y2,XY). So KG has a quotient isomorphic to B.
It is shown in example 4.2.6 that B has infinite representation type, provided
that K is infinite. If K is finite, then the same result hold (see exercise 6 of
sheet 13). It follows that KG also have infinite representation type (because
any indecomposable module of a quotient KG/I remains indecomposable
seen as a module over the base ring, on which I acts as 0).

O

Theorem 8.2.3. With the assumptions of point 3., i.e. charK = p| |G|, KG has
finite representation type if and only if the p-Sylow subgroup of G are cyclic.

Proof. Not treated in this course. O



8.3. QUIVERS OF FINITE REPRESENTATION TYPE 45

8.3 Quivers of finite representation type

Let Q be a finite quiver. Suppose that Q has no oriented cycles, so that KQ is finite
dimentional. Associated with Q there is an unoriented graph Q which is Q with
arrows replaced by unoriented edges.

Theorem 8.3.1 (Gabriel, 1972). KQ has finite representation type if and only if
the undirected graph Q is a disjoint union of Dynkin graph.

Proof. Not treated in this course. [

This concludes this course about finite dimentional algebra, and is also the last
course of prof. J. Thévenaz given to math students !
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