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tional algebras given by prof. Jaques Thévenaz at EPFL during the spring semester
2015.

Corollary. This document is provided as is, with potentially numerous typos and
errors, without warranty of any kind.



Chapter 1

Algebras and modules

1.1 Algebras

For all this course, the letter K will denote a (commutative) field.

Definition 1.1.1 (K-algebra). A K-algebra is a quadruple (A,+, ·,∗) where

1. (A,+, ·) is a ring with unit 1A,

2. (A,+,∗) is a K-vector space,

3. ∀λ ∈K,∀a,b ∈ A we have

(λ ∗a) ·b = λ ∗ (a ·b) = a · (λ ∗b).

In order to simplify notations, we’ll denote λa = λ ∗a.

Remark 1.1.2. Since a K-algebra A is also a K-vector space, we call the dimension
of A its dimension as a K-vector space.

Example 1.1.3. C is a C-algebra of dimension 1, and a R-algebra of dimension 2.

Definition 1.1.4 (K-algebra, alternate definition). . A K-algebra is a quadruple
(A,+, ·,φ) where :

1. (A,+, ·) is a ring with unit 1A,

2. φ : K−→ Z(A) is a ring homomorphism.

Proposition 1.1.5. The two definitions of K-algebra are equivalent.

Proof. Take A a K-algebra in the sense of definition 1.1.1, and define

φ : K−→ Z(A)

λ 7−→ λ ∗1A.
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2 CHAPTER 1. ALGEBRAS AND MODULES

Condition 3 of definition 1.1.1 states that the above morphism is well defined.
Conversely, take B a K-algebra in the sense of definition 1.1.4, and define the ∗
operation by

∗ : K×B−→ B

(λ ,b) 7−→ λ ∗b = φ(λ ) ·b.

Since φ takes its image in Z(B), the above operation satisfies condition 2 and 3 of
definition 1.1.1.

Remark 1.1.6. The morphism φ : K−→ Z(A) is always injective, unless A = 0.

Examples 1.1.7. 1. K is a K-algebra of dimension 1 ;

2. Mn(K) with the morhism

φ : K−→Mn(K)

λ 7−→ λ In

is a K-algebra of dimension n2 ;

3. If (A,+, ·,∗) is a K algebra, the opposite algebra (Aop,+,�,∗) is defined as
follows :

(a) (A,+,∗) = (Aop,+,∗) as K-vector spaces,
(b) ∀a,b ∈ Aop, a�b = b ·a ;

4. If G is a group, the group algebra KG is a K-algebra of dimension |G| ;

5. The previous example also works if G is a monoid, and the result is called a
monoid algebra ;

6. A quiver Q = (V,E,ε) is a finite directed (multi-)graph :

(a) V is a finite set of vertices,
(b) E is a finite set of directed edges,
(c)

ε : E −→V ×V

e 7−→ (ε0(e),ε1(e)),

where ε0(e) and ε1(e) are the origin and target of e respectively.

For every vertex v ∈V , we define a path lv of length 0 from v to v, which is
called a lazy path. Let KQ be the K-vector space with basis the set of paths
of Q. The multiplication is induced by the concatenation of paths :

(e1, . . . ,en) · ( f1, . . . , fm) =

{
(e1, . . . ,en, f1, . . . , fm) if ε1(en) = ε0( f1)
0 otherwise,

and the neutral element is given by ∑v∈V lv.
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Definition 1.1.8 (Morphism of algebras). Let A and B be two K-algebras. A mor-
phism of algebras f : A −→ B is a K-linear ring morphism. An algebra isomor-
phism is a bijective algebra morphism. Starting with definition 1.1.4, f is a algebra
morphism if it is a morphism of ring such that the following diagram commutes :

K

A B.

φA φB

f

1.2 Modules

1.2.1 Basic definitions

Definition 1.2.1 (R-Module). Let R be a ring (with unit). A left R-module is a triple
(M,+,∗) where

1. (M,+) is an abelian group,

2. ∗ : R×M −→M is such that ∀r,s ∈ R,∀m,m′ ∈M

(r+ s)∗m = r ∗m+ s∗m

r ∗ (m+m′) = r ∗m+ r ∗m′

(r · s)∗m = r ∗ (s∗m)

1R ∗m = m.

Again, in order to simplify notation, we’ll denote rm = r ∗m. A right R-module is
defined in a similar way, but with ∗ : M×R −→ M. If M is a left R-module, we
emphasize this structure with the notation RM. Similarily, if M is a right R-module,
we note MR.

Properties 1.2.2.

r0M = 0M

0Rm = 0M

r(−m) =−(rm) = (−r)m.

Remark 1.2.3. Since algebras are ring, we have a definition of module M over an
K-algebra A. Moreover, in this case, M is also a K-vector space (by restriction of
scalar along φ : K−→ A).

Definitions 1.2.4. Let M be an R-module.

1. A subgroup N ≤M that is stable under r ∗−, ∀r ∈ R is called a submodule
of M ;
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2. A submodule of RR is a left ideal of R, whereas a submodule of RR is a right
ideal ;

3. Let m1, . . . ,mn ∈M. An R-linear combination of thos elements is an element
of M of the form ∑

n
i=1 rimi, for some ri ∈ R ;

4. The module M is said finitely generated if there exist a finite subset X ⊆M
such that every element of M is a R-linear combination of elements in X ;

5. If N,L≤M, we define their sum by

N +L = {n+ l | n ∈ N, l ∈ L};

The sum is direct if N∩L = 0, and we note N +L = N⊕L ;

6. A submodule N ≤M is called a direct summand if there exists L ≤M such
that M = N⊕L ;

Definition 1.2.5 (Morphism of modules). Let M and N be two left R-modules. A
morphim of modules (of R-linear map) f : M −→ N is a group homomorphism
such that the following diagram commutes :

R×M R×N

M N.

id× f

∗ ∗
f

We denote by HomR(M,N) the set of all R-linear maps from M to N. The definition
of morphism of right R-modules is obtained similarily.

1.2.2 Quotients

Let M be a R-module, and L⊆M be a submodule. Then L is a normal subgroup of
M, and the quotient group M/L is defined. Also, there is a quotient homomorphism
π : M −→M/L. Since L is a submodule, M/L acquires a structure of R-module :

r ∗ m̄ = r ∗m, ∀m ∈M,r ∈ R.

Moreover : π : M −→M/L becomes a morphism of R-modules.

Theorem 1.2.6 (Universal property of the quotient module). For any morphism
of R-modules φ : M −→ N such that φ(L) = {0}, there exists a unique homomor-
phism of R-modules φ̄ : M/L −→ N, such that the following diagram commutes
:

M N

M/L.

φ

π
∃φ̄



1.2. MODULES 5

Proof. Follows easily from the universal property of the quotient group.

Exercise 1.2.7. π : M −→M/L induces a bijection :

{X submodule of M | L⊆ X}
∼=←→{Y submodule of M/L} .

Theorem 1.2.8 (Isomorphism theorems). 1. Let φ : M −→ N be a homomor-
phism of R-modules. Then φ̄ : M/kerφ

∼=−→ imφ is an isomorphism.

2. Let N and L be submodules of M. Then the inclusion L ↪−→ L+N induces
an isomorphism of R-modules L/(L∩N)

∼=−→ (L+N)/N.

M

L+N

L N

L∩N

0

3. Let L and N be submodules of M such that L⊆M. ThenWe have an isomor-
phism M/N

∼=−→ (M/L)/(N/L).

1.2.3 Exact sequences

Definition 1.2.9 (Exact sequence). A sequence L
φ→M

ψ→N of two homomorphism
of R-modules is said exact if imφ = kerψ .

Properties 1.2.10. 1. 0→M
ψ→ N is exact if and only if ψ is injective.

2. L
φ→M→ 0 is exact if and only if φ is surjective.

3. Let L be a submodule of M, then the following sequence is exact : 0→ L ↪→
M

π

� M/L→ 0.

4. More generaly, a sequence 0→ L
φ→ M

ψ→ L→ 0 is called a short exact
sequence if it is exact for every two consecutive pair of homomorphism :

• φ is injective,

• imφ = kerψ , and so ψ induced an isomorphism M/ imφ
∼=−→ N,
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• ψ is surjective.

Definition 1.2.11. 1. A section of a homomorphism of R-modules φ : M−→N
is a homomorphism σ : N −→ M such that φσ = idN . In that case, φ is
surjective and σ is injective.

2. A retraction of φ is a homomorphism ρ : N −→M such that ρφ = idM. In
that case, φ is injective, and ρ is surjective.

Proposition 1.2.12. Let 0→ L α→ M π→ L→ 0 be a short exact sequence of R-
modules. The following are equivalent :

1. π has a section,

2. α has a retraction,

3. imα is a direct summand of M.

Proof.

1. =⇒ 2. Assume that π has a section σ : N −→M, and define ε = idM−σπ : M −→
M. Clearly, imε ⊆ kerπ = imα . Using α−1 : imα −→ L, we obtain ρ =
α−1ε : M −→ L. Then

ρα = α
−1

εα

= α
−1(α−σ πα︸︷︷︸

=0

)

= idL .

2. =⇒ 3. Assume that α has a retraction ρ : M −→ L. Let Q = kerρ . Then M =
Q⊕ imα . Indeed, take m ∈ M and write m = αρ(m)︸ ︷︷ ︸

∈imα

+(m−αρ(m))︸ ︷︷ ︸
∈kerρ

. So

M = Q+ imα . Let m ∈ Q∩ imα . Then ∃l ∈ L suh that α(l) = m, and so
l = ρα(l) = ρ(m) = 0. So l = 0, and m = 0. Hence Q∩ imα = {0}.

3. =⇒ 1. Assume that M = Q⊕ imα . We first prove that π|Q : Q −→ L is an iso-
morphism. kerπ|Q = Q∩ kerπ = Q∩ imα = {0}. Let n ∈ N. Since π is
surjective, ∃m ∈M such that π(m) = n. Then m = q+α(l), for some q ∈ Q
and l ∈ L. However, π(q+α(l)) = π(q), and so π|Q is surjective. So it is an
isomorphism. Finaly, σ = π|−1

Q : N −→M is a section of π .

Definition 1.2.13 (Split exact sequence). Where one (and hence all) of the above
condition is satisfied, the given short exact sequence is said split.
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1.2.4 Free modules

Definition 1.2.14 (Free module). An R-module F is called free if it has a basis, i.e.
a R-generating R-linearly independent subset B⊆ F .

Lemma 1.2.15. Let F be an R-module. Then F is finitely generated free if and
only if ∃n ∈ N such that F ∼= Rn.

Proposition 1.2.16. 1. Any R-module is isomorphic to a quotient of a free mod-
ule.

2. Any finitely generated R-module is isomorphic to a quotient of a finitely gen-
erated free module.

Proof. Let M be an R-module, and G = {gi | i ∈ I} be a set of generators of M
(such a set exists : take the whole M for instance). Let F be a free module with
basis B = {bi | i ∈ I}, and define

φ : F −→M

bi 7−→ gi,

extended by R-linearity. Then M ∼= F/kerφ .

1.3 Projective modules

Proposition 1.3.1. Let R be a ring, and let P be a left R-module. The following are
equivalent :

1. P is isomorphic the a direct summand of a free module ;

2. for every surjective homomorphism π and any φ , there exists a lift as follows
:

P

L M;

∃φ̃
φ

π

3. for any surjective homomorphism φ : M −→ P, there exists a section σ :
P−→M ;

4. any short exact sequence of the form 0→ L→M→ P→ 0 splits.

Proof.



8 CHAPTER 1. ALGEBRAS AND MODULES

1. =⇒ 2. by assumption, P ∼= P′, and P′⊕Q = F free. Let η : P
∼=−→ P′ ↪−→ F , and

ρ −� P′
∼=−→ P.

F

P

M N

ρ η

φ

π

α

F has a basis G = {gi | i ∈ I}. Let mi be a preimage of φρ(gi) by π , i.e.
π(mi) = φρ(gi). As F is free, there exists a map α : F −→ M such that
α(gi) = mi. Define φ̃ = αη : P−→M. Then πφ̃ = παη = φρη = φ .

2. =⇒ 3. Consider
P

M P.

∃σ

π

3. =⇒ 4. The homomorphism M −→ P in the short exact sequence is surjective, and
so admits a section.

4. =⇒ 1. Recall that P is a quotient of a free module. So we have an exact sequence
0→ kerπ → F π→ P→ 0. It splits by assumption, and so F ∼= P⊕kerπ .

Definition 1.3.2 (Projective module). A module satisfying one (and hence all) of
the above condition is called projective.
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Semisimplicity

2.1 Definitions

Definition 2.1.1 (Simple module). Let R be a ring, and S be a left R-module. It is
said simple if it is not trivial, and if it has no submodule other than 0 and S.

Lemma 2.1.2. S is simple if and only if S is isomorphic to R/I (as modules), where
I is a maximal left ideal of R.

Proof. ⇐= We have S ∼= R/I. A submodule of S corresponds to a submodule
I ≤M ≤ R. Hence S is simple.

=⇒ Let S be simple. In particular, S 6= 0 and ∃s ∈ S \ {0}. Since R is a free
R-module with basis 1, there exists a homomorphism π : R −→ S such that
π(1) = s. We have 0 6= imπ ≤ S, and as S is simple, imπ = S. By the first
isomorphism theorem, S∼= R/kerπ . By simplicity of S, kerπ is maximal.

Lemma 2.1.3 (Schur, general case). 1. Let S be a simple left R-module. Then
EndR S as an R-module is a division ring.

2. If S and T are two nonisomorphic simple R-modules, then HomR(S,T ) = 0.

Proof. 1. Let φ ∈ EndR S. Remark that kerφ , imφ ≤ S, and so either

(a) imφ = 0, kerφ = S, in which case φ = 0 ;

(b) kerφ = 0, imφ = S, in which case φ is an automorphism, hence invert-
ible.

2. Similarily, a homomorphism φ : S−→ T is either 0 or an isomorphism.

Lemma 2.1.4 (The real lemma of Schur). Let A be a finite dimensional K-algebra,
and let S be a simple A-module.

9
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1. K ↪−→ EndA S ↪−→ EndK S = Matn(K), where n = dimK S ;

2. if K is algebraically closed, then K∼= EndA S.

Proof. 1. If S is simple, we have S ∼= A/I, for some (maximal) left ideal I, and
so S is finitely generated. So S is finite dimensional (cf exercise 1, sheet
2) as a K-vector space. Therefore, EndK S ≤Matn(K), where n = dimK S.
Obviously, EndA S is a subalgebra of EndK S, and we have an embedding
K ↪−→ EndA S : λ 7−→ λ idS.

2. Assume K algebraically closed, and let φ ∈ EndA S. Let K[X ] be the polyno-
mial ring in one variable X , and define π :K[X ]−→K[φ ]≤EndA S : X 7−→ φ .
Then π is a K-algebra map. By the general case of Schur lemma, we
know that EndA S is a division algebra, and so ρψ 6= 0 whenever ρ,ψ 6= 0,
for ρ,ψ ∈ EndA S. Therefore, the commutative subalgebra K[φ ] is a do-
main. Since K[X ] is a PID, kerπ is generated by a single polynomial f
which can be chosen monic (π can’t be injective, because K[X ] is infi-
nite dimensional, and dimEndA S ≤ n2), i.e. f is the minimal polynomial
of φ . So K[φ ] ∼= K[X ]/〈 f 〉. But this is a domain, so f is irreducible.
Since K is algebraically closed, f (X) = X − λ , for a λ ∈ K. It follows
that K[φ ] ∼= K[X ]/〈X −λ 〉 ∼= K, and so φ = λ idS. Hence, the map K −→
EndS A : λ 7−→ λ idS is an isomorphism.

Proposition 2.1.5. Let A be a finite dimensional K-algebra, and let M a be finitely
generated left A-module. The following are equivalent :

1. M is a sum of simple submodules, i.e. M = ∑i∈I Si, where Si ≤M is simple ;

2. M is a direct sum of finitely many simple submodules, i.e. M =
⊕

j∈J S j,
where S j ≤M is simple, and J finite ;

3. every submodule N ≤M is a direct summand of M.

Proof.

1. =⇒ 2. Define X =
{

J ⊆ I | ∑ j∈J S j is direct
}

. Such a J ∈ X must be finite, as
∞ > dimK M ≥ dimK ∑ j∈J S j = dimK

⊕
j∈J S j = ∑ j∈J dimK S j ≥ ]J. Take

a maximal element J in X . Then we claim that Si ⊆
⊕

j∈J S j, ∀i ∈ I. Assume
i 6∈ J. If Si 6⊆

⊕
j∈J S j, then Si∩

⊕
j∈J S j is a proper submodule of Si, and so

it is 0. So the sum Si +
⊕

j∈J S j is direct, which is absurd by maximality of
J. So M = ∑i∈I Si ⊆

⊕
j∈J S j, and finally, M =

⊕
j∈J S j.

2. =⇒ 3. We have M =
⊕

j∈J S j, and let N ≤ M. Suppose N 6= M, and define Y =
{L ⊆ J | N +

⊕
l∈L Sl is direct}. Let L be maximal in Y . We claim that

N ⊕
⊕

l∈L Sl = M. Let j ∈ J \ L, then N + (S j⊕
⊕

l∈L Sl) is not direct by
maximality of L. So S j∩N is not 0, so it is S j by simplicity. For every j ∈ J,
S j ⊆ N⊕

⊕
l∈L Sl , and so N⊕

⊕
l∈L Sl = M.
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3. =⇒ 1. Let T = ∑S⊆M,S simple S. It is a submodule of M, and so by assumption, M =
T ⊕U , for some U ≤ M. If U 6= 0, then we choose a nonzero submodule
V ≤U of minimal K-dimension. Then V must be simple by minimality, and
then we get a direct sum T ⊕V ≤ T ⊕U = M. On the other hand, V ≤ T by
definition of T . So V =U = 0, and T = M.

Definition 2.1.6. An A-module M satisfying one (and hence all) of the above con-
dition is said semisimple.

Remark 2.1.7. The results of proposition 2.1.5 holds for any ring R. The proof uses
Zorn’s lemma.

Definition 2.1.8. 1. A finitely generated A-module M is called semisimple iso-
typic if M is the direct sum of isomorphic simple modules. We have M∼= S⊕k,
for S a simple module, and we call S its type. Lemma 2.1.9 shows that this
definition is well founded.

2. If M is semisimple, then we can group all isomorphic simple summands in its
decomposition as a direct sum of simple modules, and obtain the following :

M = (S1,1⊕·· ·⊕S1,n1)︸ ︷︷ ︸
all isomorphic

⊕·· ·⊕ (Sm,1⊕·· ·⊕Sm,nm)︸ ︷︷ ︸
all isomorphic

where Si, j 6∼= Sk,l whenever i 6= k. Then Si =
⊕ni

j=1 Si, j is called an isotypic
component of M, of type Si,1 ∼= · · · ∼= Si,ni .

Lemma 2.1.9. 1. Any simple submodule of a semisimple isotypic module N of
type S is isomorphic to S.

2. If M =
⊕

S MS is a decomposition of M into isotypic components, with MS of
type S, then any simple submodule of M isomorphic to S is contained in MS.

3. MS only depends on the type S, not on the chosen simple decomposition of
M. Explicitely, MS =

⊕
T≤M,T∼=S T .

Proof. 1. N =
⊕n

i=1 Si, where Si ∼= S. Let T ≤N be simple. Then projSi
T is not

always 0, otherwise we would have T = 0. Take j such that 0 6= projS j
T ≤ S j.

Because S j is simple, we have projS j
T = S j. Moreover, since T is simple,

ker(projS j
: T −→ S j) = 0, and so T ∼= S j.

2. Let T ≤ M be a simple submodule isomorphic to S. There exists U ≤ M
simple such that projMU

T 6= 0. However, projMU
T is a simple submodule

of MU isomorphic to T . So by the previous point, U ∼= T ∼= S. The same
reasinong applies to show that projMV

T = 0, whevever V 6∼= S. So T ≤MS.

3. Obvious from previous points.
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Example 2.1.10. Let A = K. A theorem in linear algebra states that every A-
module (K-vector space) has a basis. So every A-module is semisimple isotypic of
type K.

Definition 2.1.11. Let A be a finite dimensional K-algebra.

1. A is called semisimpe algebra if AA is a semisimple module.

2. A is called simple if AA is semisimple isotypic.

Proposition 2.1.12. The following are equivalent :

1. A is semisimple ;

2. every finitely generated left A-module is projective ;

3. every finitely generated left A-module is semisimple.

Proof.

1. =⇒ 2. Let M be a finitely generated left A-module. Then ∃n ∈ N such that M ∼=
F/N, where F = A⊕n is free, and N ≤ F . Moreover, F is semisimple, and
so N is a direct summand of F , i.e. F = N⊕Q, for some submodule Q. So
M ∼= Q is projective.

2. =⇒ 3. Let N be a submodule of M. We have a short exact sequence 0→ N →
M→ M/N → 0. By assumption, M/N is projective, so the previous exact
sequence splits, and M ∼= N⊕M/N. So N is a direct summand of M, and M
is semisimple.

3. =⇒ 1. Remark that A is a finitely generated A-module.

Exercise 2.1.13. If A is semisimple, let A ∼=
⊕r

i=1 MSi be its isotypic decomposi-
tion. Prove that any simple A-module is isomorphic to one Si.

2.2 The Wedderburn classifications theorem

Example 2.2.1. Let D be a finite dimensional division K-algebra. Then D⊕n =
d1

...
dn

 | d1, . . . ,dn ∈ D

 is a left Mn(D)-module. Then Mn(D)D⊕n is simple be-

cause if s ∈ D⊕n, s 6= 0, then si 6= 0 for some i, then



0 · · · · · · · · · 0
...

...
... s−1

i
...

...
...

0 · · · · · · · · · 0


s =
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
0
...
1
...
0

, and

0 · · · t1 · · · 0
...

...
...

0 · · · tn · · · 0




0
...
1
...
0

 =

t1
...
tn

, and so Mn(D)s = D⊕n. Now,

Mn(D) is a simple K-algebra because

Mn(D) =

∗ 0 · · · 0
...

...
...

∗ 0 · · · 0


︸ ︷︷ ︸

∼=D⊕n

⊕

0 ∗ · · · 0
...

...
...

0 ∗ · · · 0


︸ ︷︷ ︸

∼=D⊕n

⊕·· ·⊕

0 · · · 0 ∗
...

...
...

0 · · · 0 ∗


︸ ︷︷ ︸

∼=D⊕n

.

Exercise 2.2.2. Any product ∏i Mni(Di) is semisimple, where Di is a division K-
algebra.

Lemma 2.2.3. Let P and Q be two left A-modules, and suppose that P =
⊕p

i=1 Xi,
Q =

⊕q
i=1Yi. Let ε j : X j ↪−→ P be the inclusions, and πi : Q −� Yi be the projec-

tions. Denote Hom = HomA.

1. Define

M =

Hom(X1,Y1) · · · Hom(Xp,Y1)
...

. . .
...

Hom(X1,Yq) · · · Hom(Xp,Yq)

∼=⊕
i, j

Hom(Xi,Yj).

Then M ∼= Hom(P,Q) as A-modules.

2. If P = Q, p = q, Xi = Yi, then the isomorphism of the previous point is an
isomorphism of K-algebras : EndP∼= M as rings, where M is endowed with
the usual matrix multiplication.

Proof. 1. Remark that

φ : Hom(P,Q)−→M

f 7−→

π1 f ε1 · · · π1 f εp
...

. . .
...

πq f ε1 · · · πq f εp


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is an isomorphism with inverse

ψ : M −→ Hom(P,Q)b1,1 · · · bp,1
...

. . .
...

b1,q · · · bp,q

 7−→ ψ((bi, j)i, j),

ψ((bi, j)i, j) : P−→ Q

(x1, . . . ,xp) 7−→

(
q

∑
j=1

b1, j(x j), . . . ,
q

∑
j=1

bp, j(x j)

)
.

2. The fact that P = Q, p = q, Xi =Yi make the matrix multiplication of M well
defined. The rest is routine verifications.

Corollary 2.2.4. 1. Let S and T be two nonisomorphic simple A-modules. Then
HomA(S⊕p,T⊕q) = 0.

2. Let S be an A-module (not necessarily simple). Then EndA(S⊕p)∼=Mp(EndA S).

Proof. 1. By previous lemma, we have HomA(S⊕p,T⊕q)∼=Mq×p(HomA(S,T )︸ ︷︷ ︸
=0

)=

0.

2. By previous lemma.

Theorem 2.2.5 (Wedderburn). Let A be a finite dimensional K-algebra. If A is
semisimple, then A ∼= ∏

r
i=1 Mni(Di), where Di is a division K-algebra, ni ≥ 1.

Moreover, Dop
i
∼= EndA Si, where Si is a simple A-module.

Proof. We have that AA is semisimple, and let A ∼=
⊕r

i=1 S⊕ni
i be its isotypic de-

composition. By the lemma,

EndA A∼=

EndA S⊕n1
1 0

. . .
0 EndA S⊕nr

r


∼=

r

∏
i=1

EndA S⊕ni
i

∼=
r

∏
i=1

Mni(EndA Si).
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By Schur’s lemma, EndA Si is a division algebra. But we have an isomorphism of
algebras Aop

∼=−→ EndA A. Indeed :

Aop −→ EndA A

b 7−→ mb, right multiplication by b,

EndA A−→ Aop

f 7−→ f (1),

are mutually inverse. Hence,

A∼= (EndA A)op ∼= (
r

∏
i=1

Mni(EndA Si))
op =

r

∏
i=1

Mni (EndA Si)
op︸ ︷︷ ︸

=Di

.

The isomorphism Mn(R)op −→Mn(Rop) is given by transposition.

Corollary 2.2.6. Suppose that K is algebraically closed. If A is a semisimple K-
algebra, then A∼= ∏

r
i=1 Mni(K).

Proof. In this case, EndA Si ∼= K by Schur’s lemma, and so Di = Mni(K)op =
Mni(K) because Mni(K) is commutative.

Corollary 2.2.7. If A is a simple K-algebra, then A∼=Mn(D), where D=(EndA S)op,
where S is the unique simple A-module up to isomorphism.

Theorem 2.2.8 (Maschke). Take G a finite group, and K a field. Then KG is
semisimple if and only if charK 6 | |G|, i.e. |G| 6= 0 in K.

Proof. =⇒ Suppose that KG is semisimple. Consider

ε : KG−→K

∑
g∈G

λgg 7−→ ∑
g∈G

λg.

This makes K into a KG module (with trivial G-action), and ε is KG-linear
surjective. By semisimplicity, ε splits (as K is projective). Let σ :K−→KG
a KG-linear section of ε . Put σ(1) = ∑g∈G λgg. Take h ∈ G, then hσ(1) =
σ(h1) = σ(1), and so

∑
g∈G

λghg = ∑
g∈G

λgg, ∀h ∈ G.

Hence all λgs are equal. Write σ(1) = λ ∑g∈G g. Then

1 = εσ(1) = λε

(
∑
g∈G

g

)
= λ |G|,

and so |G| 6= 0 in K.
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⇐= Suppose charK 6 | |G|. We prove that every KG-module P is projective. Let

0→ N α→ M
π

� P→ 0 be a short exact sequence. The sequence splits as
a sequence of K-vector spaces and so there exists σ : P −→ M a K-linear
section of π . Define τ = 1

|G| ∑g∈G gσ(g−1 · −) : P −→ M. It is easy to see
that τ is a KG-linear section of π , so the sequence splits, and P is projective.

Exercise 2.2.9. Let A be a finite dimentional semisimple K-algebra, and Si be a
simple A-module. Prove that the multiplicity ni of Si in the semisimple decompo-
sition of A is dimDi Si, where Di = EndA Si.



Chapter 3

The Jacobson radical

3.1 Definition

Definition 3.1.1 (Composition series). Let M be a an R-module, where R is a ring.
A composition serie of M is a sequence of submodules

0 = Mk < Mk−1 < · · ·< M0 = M

such that every quotient Mi/Mi−1 is simple. Such a quotient is called a composition
factor.

Lemma 3.1.2. If A is a finite dimentional K-algebra, and M a finitely generated
A-module, then it admits a composition serie.

Proof. Recall that M is finite dimensional. Take a proper submodule N of maximal
dimension. Then M/N is simple. Repeat with N. The process enventually stops as
M is finite dimensional.

Theorem 3.1.3 (Jordan–Holder). Let A be a finite dimensional K-algebra, and M
a finitely generated left A-module. Any two composition series of M have the same
length and isomorphic quotients up to permutation. Explicitely, if

0 = Mr < Mr−1 < · · ·< M0 = M, 0 = Ns < Ns−1 < · · ·< N0 = M

are two composition series, then r = s, and there exists σ ∈Sr such that Ni−1/Ni∼=
Mσ(i)−1/Mσ(i).

Proof. By induction on dimK M. If dimK M = 1, then M is simple, and the result
is obvious. If M1 = N1, then the result follows by induction hypothesis. Suppose

17
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now that M1 6= N1. Then M1 +N1 = M by maximality of M1 and N1.

M

M1 N1

M2 M1∩N1 N2

... Q1
...

...

Let 0 = Qk < · · · < Q0 = M1 ∩N1 be a composition series. The two composition
series of M1 give (by induction) r−1= k+1, and isomorphic quotients. Therefore,
the composition factor of M1 are, up to isomorphism, {composition factors of M1∩
N1}∪ {M1/M1 ∩N1}. Similarily for N1 : its composition factors are, up to iso-
morphis, {composition factors of M1 ∩N1}∪ {N1/M1 ∩N1}. Then the factors of
the first series for M are, up to isomorphism {composition factors of M1 ∩N1}∪
{M/M1,M1/M1∩N1}. For the second series, we have {composition factors of M1∩
N1}∪{M/N1,N1/M1∩N1}. Moreover, M/M1∼=N1/M1∩N1, and M/N1∼=M1/M1∩
N1. So the two composition series have the same factors.

Corollary 3.1.4. There are finitely many simple A-modules, up to isomorphism.

Proof. It S is simple, then S ∼= A/J, for some maximal ideal J. Then S is a com-
position factor of the following composition series of 0 < · · ·< J < A. However, A
only has finitely many composition factors.

Definition 3.1.5 (Jacobson radical). Let A be a finite dimensional K-algebra, and
M a finitely generated A-module.

1. The Jacobson radical of M, written J(M), is the intersection of all maximal
submodules of M.

2. The Jacobson radical of A is J(A) = J(AA), the intersection of all maximal
left ideals.

Example 3.1.6. If M is semisimple, then J(M) = 0. Indeed, M =
⊕

i Si, and so⊕
i 6= j Si is a maximal submodule. Hence J(M)≤

⋂
j
⊕

i 6= j Si = 0.

3.2 Caracterisations

Propositions 3.2.1. 1. Let I be a left ideal of A. Then I is maximal if and only if
there exists S a simple module, and s ∈ S, s 6= 0 such that I = Ann(s), where
Ann(s) = {a ∈ A | as = 0} is the annihilator of s.
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2. J(A) =
⋂

S simple Ann(S), where Ann(S) = {a ∈ A | aS = 0}=
⋂

s∈S Ann(s) is
the annihilator of S.

3. J(A) is a two sided ideal.

Proof. 1. A/I is simple, and so I = Ann(1), for 1 ∈ A/I. Conversely, if S is
simple, s 6= 0, then As = S, and so A/Ann(s)∼= S using the first isomorphism
theorem for the map φ : A−→ S,a 7−→ as.

2. We have

J(A) =
⋂

I max. left ideal

I

=
⋂

S simple

⋂
06=s∈S

Ann(s)︸ ︷︷ ︸
=Ann(S)

.

3. Let a ∈ J(A), and b ∈ A. Let S be a simple module. Then abS = 0, as bS is
either S or 0. Hence, ab∈Ann(S), for all simple module S, and so ab∈ J(A).

Proposition 3.2.2. Let I be a left ideal of A. Then I ≤ J(A) if and only if 1+ I ≤ A×

Proof. =⇒ a ∈ I ≤ J(A), and so a ∈ m, for every maximal ideal m of A, and so
1+ a 6∈ m (otherwise, 1 ∈ m). However, an element is non left invertible
if and only if it is contained in some (without loss of generality maximal)
left ideal. So 1+ a is left invertible : ∃u ∈ A such that u(1+ a) = 1. Now
u = 1−ua, and−ua∈ I, as I is a left ideal. The same argument applied to ua
shows that −ua is left invertible : ∃v ∈ A such that v(1−ua) = 1. However
1−ua = u, and so vu = 1. Therefore 1+a = vu(1+a) = v, and so 1+a has
right inverse u.

⇐= Let m be a maximal left ideal of A. If a 6∈m, then Aa+m= A, because m is
maximal. So ba+m = 1, for some b∈ A, m∈m. Hence 1−ba = m∈m, but
1− ba ∈ A× as −ba ∈ I, which is absurd. Therefore a ∈ m, and this holds
for every maximal left ideal m, so a ∈ J(A).

中中中山山山のののレレレンンンマママ 3.2.3. Let A be a finite dimensional K-algebra, and M a finitely
generated left A-module. Then J(A)M = M, then M = 0.

Proof. Let m1, . . . ,mr be a minimal set of generators of M. So M = ∑i Ami. Since
J(A)M = M, the element mr can be written mr = ∑aimi, with ai ∈ J(A). There-
fore a1m1 + · · ·+ar−1mr−1 = (1−ar)︸ ︷︷ ︸

invertible

mr. So M = ∑i<r aimi, a contradiction with

minimality of {mi}1≤i≤r.
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中中中山山山のののレレレンンンマママ 3.2.4 (Alternate form). Let A be a finite dimensional K-algebra,
M a finitely generated left A-module, and N ≤M. If J(A)M+N = M, then N = M.

Proof. See exercise 2 from sheet 6.

Theorem 3.2.5. Let A be a finite dimensional K-algebra. Then J(A) is the smallest
two sided ideal with semisimple quotient. Explicitely :

1. A/J(A) is semisimple,

2. and if A/I is also semsimple, with I a two sided ideal, then J(A)≤ I.

Proof. We claim that J(A) is an intersection of finitely many maximal left ide-
als. Let I =

⋂
imi be a finite intersection of maximal left ideals, with codimK I =

dimK A−dimK I as large as possible (bounded by dimK A). If m is a maximal left
ideal, then I ∩m is a finite intersection with larger codimension, and so by maxi-
mality of codimK I and m, we have I∩m= I, hence I ≤m. This argument applies
for every left ideal m, and so J(A)≤ I ≤ J(A), which proves the claim.

1. Now, J(A) =
⋂

imi. So the obvious homomorphism A/J(A)−→
⊕

i A/mi is
injective. Each summand of the latter is simple, so the sum is semisimple.
Therefore, A/J(A) is isomorphic to a submodule of a semisimple module, so
it is itself semisimple.

2. Let I be a two sided ideal such that A/I =
⊕

i Si is semisimple. Note that
Ann(A/I) = I, and so I ≤ Ann(Si). Hence, J(A)≤ I.

Corollary 3.2.6. A is semisimple if and only of J(A) = 0.

Example 3.2.7. Z is not semisimple, but J(Z) =
⋂

p primeZp = 0.

Theorem 3.2.8. Let A be a finite dimensional K-algebra. Then J(A) is the largest
two sided nilpotent ideal. Explicitely

1. J(A) is nilpotent,

2. if I is a two sided nilpotent ideal, then I ≤ J(A).

Proof. 1. Consider a composition series 0 = Mr < · · · < M0 = A. Then every
Mi is a left ideal. Since Mi/Mi+1 is simple, then J(A)Mi/Mi+1 = 0, hence
J(A)Mi ≤Mi+1. Therefore

J(A)rA︸ ︷︷ ︸
=J(A)r

= J(A)rM0 ≤ J(A)r−1M1 ≤ ·· · ≤Mr = 0.



3.3. LOCAL RINGS 21

2. Let S be a simple A-module. Then IS ≤ S. If IS = S, then InS = S, and
for n large enough, In = 0, so S = 0, a contradiction. So IS = 0. So I ≤⋂

S simple Ann(S) = J(A).

Example 3.2.9. Take A =K[t]/(tn), then J(A) = (t). It is obviously nilpotent, and
A/J(A)∼=K is semisimple.

Proposition 3.2.10. Let M be a finitely generated A-module, where A is a finite
dimensional K-algebra.

1. If N ≤M such that M/N is semisimple, then J(M)≤ N.

2. J(M) = J(A)M.

3. M/J(M) is semisimple.

Proof. 1. If M/N is semisimple, then M/N =
⊕

i Si, and so J(M/N) = 0 (see
example 3.1.6). So

⋂
N≤L max. submod. L = N. So J(M)≤ N.

2. If L ≤ M is a maximal submodule, then J(A)M/L = 0, as M/L is simple.
So J(A)M ≤ L. Therefore J(A)M ≤

⋂
L max. submod. L = J(M). Conversely,

M/(J(A)M) is a A/J(A)-module. The latter algebra is semisimple, and so is
M/(J(A)M) =

⊕
i Si, where Si is a simple A/J(A)-module, hence a simple

A-module 1. So M/(J(A)M) is a semisimple A-module. By previous point,
J(M)≤ J(A)M.

3. Already proved.

3.3 Local rings

Definition 3.3.1 (Local ring). Let R be a ring. Then R is local if R has a unique
maximal left ideal.

Lemma 3.3.2. Let R be a local ring, and let J be its unique maximal left ideal.
Then :

1. J is two sided.

2. J = R\R×.

3. R/J is a division ring.

1That trick wouldn’t work for an arbitrary restriction of scalars
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Proof. 1. If b ∈ R\{0}, then Ann(b) is a proper left ideal, as it doesn’t contain
1, so Ann(b)≤ J. If Jb 6≤ J, then we would get Jb= R. So b is left invertible,
by an element a∈ J. Then (1−ba)b= b−bab= 0. So 1−ba∈Ann(b)≤ J.
But a ∈ J, so 1 = 1−ba︸ ︷︷ ︸

∈J

+ ba︸︷︷︸
∈J

∈ J, which is absurd.

2. If r ∈ R \ R×, then r is contained in a proper ideal, namely (r). So it is
contained is a maximal ideal (using Zorn’s lemma), which nessecesarily is
J. So r ∈ J, and R\R× ⊆ J. Conversely, J cannot have any left unit (as it is
a left ideal), nor right unit (as it is a right ideal), hence the equality.

3. Obvious.

Lemma 3.3.3. Let R be a ring. Suppose that every element of R is either invertible
or nilpotent. Then R is local.

Proof. Recall that an invertible element cannot be nilpotent. Take J the set of all
nilpotent elements of R. Let a ∈ J and b ∈ R. The ba is a zero divisor : ba ·an−1 =
ban = 0, where n is the least integer such that an = 0. So ba is not invertible, hence
nilpotent, hence ba ∈ J. Let a1,a2 ∈ J. Suppose a1 +a2 6∈ J, hence invertible. So
xa1 + xa2 = 1, for some x. Note that xa1 and xa2 commute (as r and 1− r always
commute, for any r ∈ R). Let n1 and n2 be integers such that (xai)

ni = 0, and
N = n1 +n2. We can use Newton’s formula (as xa1 and xa2 commute) :

1 = (xa1 + xa2)
N =

N

∑
i=0

(
N
i

)
(xa1)

i(xa2)
N−i︸ ︷︷ ︸

=0

,

indeed, we ecessarily have that i ≥ n1 or N − i ≥ n2. We have an absurdity, so
a1+a2 ∈ J. Hence, J is an ideal, and J = R\R×. So J is the unique maximal ideal,
and R is local.

Exercise 3.3.4. Let A be a finite dimentional K-algebra. Then A is a local if and
only if A/J(A) is a division algebra.
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Indecomposable modules

4.1 The Krull–Remak–Schmidt decomposition theorem

Definition 4.1.1 ((In)decomposable module). Let A be a finite dimentional K-
algebra, where K is a field. A left A-module M is decomposable if M = M1⊕M2,
for M1,M2 ≤M non zero. It is indecomposable otherwise, if it is not null.

Example 4.1.2. Any simple module is indecomposable.

Exercise 4.1.3. If conversely every indecomposable A-module is simple, then A is
a semisimple algebra.

Remark 4.1.4. Every finitely generated A-module can be decomposed as a direct
sum M =

⊕
i Mi of indecomposable submodules.

Lemma 4.1.5 (Fitting’s lemma). Let A be a finite dimentional K-algebra, and M
a finitely generated A-module. Let φ ∈ EndA M. Then there exists n ∈ N such that
M = kerφ n⊕ imφ n.

Proof. Since dimK M is finite, the following two series must stop :

M ≥ imφ ≥ imφ
2 ≥ ·· · ≥ imφ

n = imφ
n+1 = · · · ,

0≤ kerφ ≤ kerφ
2 ≤ ·· · ≤ kerφ

n = kerφ
n+1 = · · · ,

and imφ n+k = imφ n, kerφ n+k = kerφ n for all k ∈ N. Let x ∈ M. Then φ n(x) =
φ 2n(y) for some y ∈M (as imφ n = imφ 2n). So φ n(x− φ n(y)) = 0, therefore x =
φ

n(y)︸ ︷︷ ︸
∈imφ n

+x−φ
n(y)︸ ︷︷ ︸

∈kerφ n

. So M = imφ n +kerφ n. Let x ∈ imφ n∩kerφ n. Then x = φ n(z)

for some z ∈ M. Therefore 0 = φ n(x) = φ 2n(z). So z ∈ kerφ 2n = kerφ n, hence
x = 0. Hence imφ n∩kerφ n = 0, and we get M = kerφ n⊕ imφ n.

Theorem 4.1.6. Let A be a finite dimentional K-algebra, and M a finitely gener-
ated left A-module. Then M is indecomposable if and only if EndA M is local.

23
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Proof. =⇒ Suppose M indecomposable. By Fitting’s lemma, there exists an inte-
ger such that M = imφ n⊕kerφ n, for a given φ ∈ EndA M. However, M is in-
decomposable, si one of the summands is zero. If kerφ n = 0 and imφ n = M,
then kerφ = 0, and imφ = M, and so φ is an automorphism. If kerφ n = M,
then φ is nilpotent. By lemma 3.3.3, we obtain that EndA M is local.

⇐= Suppose EndA M local. Let M = M1⊕M2, and πi : M −� Mi ↪−→M be the
projections. Then π2

i = πi, π1 +π2 = idM. Without loss of generality, sup-
pose M1 6= 0, then π1 6= 0, and so it is not nilpotent (because it is idempotent).
Hence, π1 is invertible. Then

π1 = π
−1
1 π

2
1︸︷︷︸

=π1

= idM .

Hence π2 = 0, and so M2 = 0.

Corollary 4.1.7. A is local if and only if AA is indecomposable.

Proof. We have EndA(AA)∼= Aop which is also local.

Theorem 4.1.8 (Krull–Remak–Schmidt). Let A be a finitely generated K-algebra,
and M a finite dimensional left A-module. Suppose that M =

⊕r
i=1 Mi =

⊕s
j=1 N j,

where all summands are indecomposable. Then r = s, and there exists σ ∈Sr such
that Mi ∼= Nσ(i). In other words, a decomposition into indecomposable modules is
essentially unique.

Proof. We proceed by induction on r. If r = 1, then M = M1 is indecomposable,
so s = 1, and M1 = N1. Suppose r ≥ 2. Let εi : Mi ↪−→M the canonical inclusion,
πi : M −� Mi the canonical projection, and η j : N j ↪−→ M, ρ j : M −� N j the
analogous. Then πiεi = idMi , and εiπi : M−→M is idempotent. Moreover ∑i εiπi =
idM. Similarily for η j and ρ j.

The composite M1
ε1

↪−→M
∑ j η jρ j−−−−→M

π1−�M is idM1 . Therefore idM1 =∑ j π1η jρ jε1 ∈
EndA M1, and the latter ring is local. So it can’t be that all summands are nilpotent.
Let 1≤ j ≤ s such that φ = π1η jρ jε1 is invertible. Without loss of generality (i.e.
up to permutation), j = 1.

Let α = ρ1ε1φ−1 and β = π1η1. The composite M1
α−→ N1

β−→ M1 is idM1 .
Moreover αβ is idempotent and not zero (because β (αβ )α = idM1). It is therefore
not nilpotent, so it is invertible, as EndA N1 is local. Denote γ = αβ . Then γ =
γ−1γ2 = γ−1γ = idN1 . So α and β are mutually inverse, hence M1 ∼= N1.

Now,
⊕r

i=2 Mi ∼=
⊕s

j=2 Ni, and we apply the induction hypothesis.

Remarks 4.1.9. 1. The Krull–Remak–Schmidt theorem fails for some other rings,
e.g. for ring of integers in a number field (a finite field extension of Q), e.g.
Z[
√

5].
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2. But it works for PIDs (yayyyy).

3. If A is a finitely generated K-algebra, and M is a finite dimensional left A-
module, then we know that dimK M < ∞. Therefore a decomposition into
indecomposable always exists (by induction).

4.2 Idempotent elements

Definition 4.2.1 (Orthogonal/primitive idempotents). Let R be a ring, and e, f ∈ R
two idempotents. They are called orthogonal if e f = f e = 0. An idempotent e ∈ R
is called primitive if e cannot be decomposed as a sum of two nonzero orthogonal
idempotents.

Example 4.2.2. In any ring R, and for all idempotent e∈R, we have that e and (1−
e) are orthogonal idempotents. Hence, if e 6= 0,1, e+(1− e) = 1 is an orthogonal
decomposition, and 1 is not primitive.

Lemma 4.2.3. Let R be a ring.

1. If RR =
⊕r

i=1 Qi, then Qi = Rei, where ei is idempotent, and ∑i ei = 1 is an
orthogonal decomposition.

2. Conversely, any orthogonal decomposition of 1 into idempotents e1, . . . ,er

leads to a decomposition RR =
⊕r

i=1 Rei.

3. If e∈ R is idempotent, then Re is indecomposable if and only if e is primitive.

Proof. 1. There is a unique way of writing 1 = ∑i ei, where ei ∈ Qi. Then
e j = ∑i e jei︸︷︷︸

∈Qi

, and so e jei = 0 if i 6= j, and e2
j = e j. So {ei}i is a family of

orthogonal idempotents. Take x ∈ Q j. Then x = x1 = ∑i xei, and so xei = 0
if i 6= j, and xe j = x. So Q j = Re j.

2. We have 1 = ∑i ei, so R = R1 = ∑i Rei. Let x ∈ Re j∩∑i6= j Rei. Then x = xei,
and x = ∑i 6= j jie j. So x = xei = ∑i 6= j jie jei = 0.

3. If e = u+v is a decomposition into orthogonal idempotents, then Re = Ru⊕
Rv. Conversely, if Re = U ⊕V , then e = πU(e)+ πV (e), and by the same
argument as in point 1., those two terms are orthogonal idempotents.

Corollary 4.2.4. Let A be a finite dimentional K-algebra. Let P be a finitely gen-
erated projective left A-module.

1. P is indecomposable if and only if P∼= Ae, where e is a primitive idempotent
of A.
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2. There are finitely many indecomposable projective modules up to isomor-
phism.

Proof. First, decompose AA. By the previous lemma, A =
⊕n

i=1 Aei, where 1 =

∑i ei is an orthogonal primitive idempotent decomposition. Such a decomposition
must exist because of the Krull–Remak–Schmidt theorem.

1. P is a direct summand of A⊕r which decomposes as
⊕n

i=1(Aei)
⊕r. By the

Krull–Remak–Schmidt theorem, P∼= Aei for some i.

2. We know that A⊕r ∼=
⊕n

i=1(Aei)
⊕r, and so any indecomposable projective

module is isomorphic to Aei, for some ei.

Theorem 4.2.5. Let A be a finite dimentional K-algebra. There is a bijection{
conjugacy classes of primitive

idempotents in A

}
←→

{
iso. classes of indecomposable

projective left A-modules

}
mapping the class of a primitive idempotent e ∈ A to the isomorphism class of Ae.

Proof. We have to check that this mapping is well defined. It is clear that any
conjugate of an idempotent (resp. primitive idempotent) is again idempotent (resp.
primitive idempotent). Let e, f ∈ A be conjugate primitive idempotents. There
exists u ∈ A× such that e = u f u−1. Define mu : A f −→ Ae : x 7−→ xu, and mu−1 :
Ae−→ A f similarily. Then mu and mu−1 are mutually inverse, and so Ae∼= A f .

Then, the mapping is surjective by the previous corollary. It remains to show
injectivity. Let e, f ∈ A be primitive idempotents such that Ae ∼= A f . We have
A ∼= Ae⊕A(1− e) ∼= A f ⊕A(1− f ). So A(1− e) ∼= A(1− f ) by cancellation (ex-
ercise 2, sheet 8). Therefore there exists an isomorphism φ : A −→ A such that
φ(Ae) = A f , and φ(A(1−e)) = A(1− f ). However, φ must be of the form φ = mu

(right multiplication by u), for some u ∈ A×. Then u−1eu is an idempotents, and
Au−1eu = Aeu = φ(Ae) = A f , and A(1−u−1eu) = Au−1(1−e)u = φ(A(1−e)) =
A(1− f ). Then m f and mu−1eu are the identity on A f , and zero on A(1− f ). There-
fore m f = mu−1eu on A = A f ⊕A(1− f ). In particular, they coincide on 1, and so
f = u−1eu.

Example 4.2.6. 1. Take A to be semisimple. By the Wedderburn theorem, A∼=
∏i Mni(Di), where Di is a division ring. Take

ei =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ∈Mni(Di).
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It is a primitive idempotent. Moreover, as A is semisimple, any indecompos-
able projective is simple. Hence

Aei ∼= Mni(Di)ei =

Di
...

Di

∼= Dn
i

is simple. See exercises.

2. An example with infinitely many indecomposable modules. Define the alge-
bra A=K[X ,Y ]/(X2,Y 2,XY ). Let s= X̄ , t = Ȳ . Then dimK A= 3, with basis
{1,s, t}, and multiplication s2 = t2 = st = ts = 0. Clearly, J(A) = Ks⊕Kt,
as it is the largest nilpotent ideal. Then, A/J(A) = K. We have only one
simple module S = A/J(A), one idempotent, namely 1, which is also prim-
itive. Therefore, A is indecomposable projective. Fix λ ∈ K×, and define a
2-dimentional A-module Mλ with basis {m,n} as follows :

sm = n, sn = 0

tm = λn, tn = 0.

Let Nλ = J(Mλ ) = J(A)Mλ =Kn. We have Nλ
∼= S, and Mλ/Nλ

∼= S, and so
there is a short exact sequence

0−→ S−→Mλ −→ S−→ 0.

The rest of the proof that Mλ is indecomposable is left as an exercise. Next,
ms : Mλ −→Mλ : x 7−→ sx induces a linear map m̄s : Mλ/Nλ −→ Nλ : sx̄ 7−→
x. Moreover m̄s(m) = n, and so m̄s is an isomorphism. Similarily, mt :
Mλ −→Mλ induces a K-linear isomorphism m̄t : Mλ/Nλ −→Nλ , with m̄t(m)=
λn. Now the composite φλ

Nλ = J(Mλ )
m̄−1

t−→Mλ/J(Mλ )
m̄s−→ Nλ

maps n to λ−1n. The map φλ is intrisically defined by Mλ , because it is
m̄sm̄−1

t . Assiciated to Mλ we have a intrisically defined map φλ : Nλ =
Kn −→ Nλ which is multiplication by λ−1. So from Mλ , one can recover
λ . Therefore if Mλ

∼= Mµ , then λ = µ . Finally, if K is infinite, we have
infinitely many non isomorphic indecomposable modules.
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Chapter 5

Lifting idempotents

Definition 5.0.7 (Primitive orthogonal decomposition). Let R be a ring. A primi-
tive orthogonal decomposition of an idempotent e ∈ R is a decomposition of e as a
sum of primitive pairwise orthogonal idempotents.

Lemma 5.0.8. Let A be a finit dimentional K-algebra, e∈ A idempotent. Consider
the K-algebra eAe (with identity e). Then J(eAe) = eJ(A)e.

Proof. First, eJ(A)e⊆ J(A),eAe. Next, if a ∈ J(A)∩eAe, then a = ebe with b ∈ A,
and so a = eae. Therefore a ∈ eJ(A)e. Hence, eJ(A)e = J(A)∩ eAe.

Moreover, J(A)N = 0 for some lage enough N ∈ N, so (eJ(A)e)N = 0. So the
two sided ideal eJ(A)e of eAe is nilpotent, hence eJ(A)e⊆ J(eAe). Next, AJ(eAe)A
is the two sided ideal of A denerated by J(eAe). We have

(AJ(eAe)A)2 = AeJ(eAe)eAeJ(eAe)︸ ︷︷ ︸
=J(eAe)2

eA.

Similarily, (AJ(eAe)A)n = AeJ(eAe)neA, hence, AJ(eAe)A is nilpotent, and so
AJ(eAe)A⊆ J(A). Therefore, J(eAe)⊆ J(A), hence J(eAe)⊆ eJ(A)e.

Finally, J(eAe) = eJ(A)e.

Theorem 5.0.9 (Lifting stuffs). Let A be a finite dimentional K-algebra, Ā =
A/J(A), and write ā ∈ Ā for the class of a ∈ A in Ā.

1. Lifting invertibility : a ∈ A is invertible if and only if ā is invertible. In other
words, there is a short exact sequence of groups

{1} −→ 1+ J(A)−→ A× −→ Ā× −→ {1}.

2. Lifting idempotents : For any idempotent g ∈ Ā, there exists an idempotent
e ∈ A such that ē = g.

3. Lifting conjugacy of idempotents : Let e, f ∈ A be two idempotents, if ē and
f̄ are conjugate in Ā, then e and f are conjugate in A. More precisely, if
f̄ = ūēū−1, then ū can be lifted as u∈ A× such that f = ueu−1. In particular,
if ē = f̄ , then there exists u ∈ 1+ J(A) such that f = ueu−1.

29
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4. Lifting primitivity : Let e ∈ A be idempotent. Then e is primitive in A if and
only if ē is primitive in Ā.

5. Lifting idempotent decompositions : Let e ∈ A be idempotent, and ē = ∑i gi

be a primitive orthogonal decomposition of Ē in Ā. Then there exists ei ∈ A
with ēi = gi, and such that e = ∑i ei is a primitive orthogonal decomposition
of e in A.

Proof. 1. If a ∈ A is invertible, then clearly ā is also invertible. Conversely,
take a ∈ A such that ā is invertible, and suppose that a is not invertible. If
a is not in a maximal left ideal, then Aa = A, and similarily on the right.
If Aa = aA = A, then ∃b,c ∈ A such that ba = ac = 1, so a is invertible,
a contradiction. Therefore, a belongs to a maximal left ideal m ⊆ A. By
definition, J(A)⊆m. Hence m=m/J(A) is a maximal ideal in Ā, and ā∈m.
Consequently ā is not invertible, a contradiction.

Finally, the projection A× −→ Ā× is surjective, with kernel 1+ J(A).

2. Let g ∈ Ā be an idempotent. By surjectivity of the projection A−� Ā, there
exists a1 ∈ A such that ā1 = g. Let b1 = a2

1− a1. Define inductively an =
an−1 +bn−1−2an−1bn−1, and bn = a2

n−an.

We show by induction that bn ∈ J(A)n. For n = 1, remark that b̄1 = g2−g =
0, and so b1 ∈ J(A). We use the fact that a2

n = an +bn, and also that an and
bn commute (as bn = a2

n−an). By induction, assume that bn ∈ J(A)n. Notice
that b2

n ∈ J(A)2n ⊆ J(A)n+1. Compute an+1 modulo J(A)n+1.

a2
n+1 = (an +bn−2anbn)

2

= a2
n +b2

n +4a2
nb2

n +2anbn−4a2
nbn−4anb2

n

≡ a2
n +2anbn−4a2

nbn mod J(A)n+1

≡ an +bn +2anbn−4(an +bn)bn mod J(A)n+1

≡ an +bn−2anbn mod J(A)n+1

≡ an+1 mod J(A)n+1.

Therefore, a2
n+1≡ an+1 mod J(A)n+1, and so bn+1 = a2

n+1−an+1 ∈ J(A)n+1,
thus proving the claim.

As J(A) is nilpotent, there exists, N ∈ N such that J(A)N = 0, and so bN =
a2

N − aN = 0, and aN is idempotent. By induction, on can easily prove that
āN = g, which proves the statement.

3. Let e, f ∈ A be two idempotents such that f̄ = ūēū−1 for some ū ∈ ā×. Then
ū lifts as u ∈ A× by part 1. Denote by h = ueu−1. It is an idempotent, and
h̄= f̄ . Let v= 1−h− f +2h f . Then v̄= 1− h̄− f̄ +2 f̄ h̄= 1. So v∈ 1+J(A)
is invertible. Compute

hv = h−h−h f +2h f = h f

v f = f −h f − f +2h f = h f .
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So hv = v f , and ueu−1 = h = v f v−1, and e and f are conjugate.

4. Let e ∈ A to be an idempotent. If e is not primitive, then e = f1 + f2, for
f1, f2 ∈ A orthogonal idempotents. Remark that f1, f2 6∈ J(A) as J(A) is
nilpotent. So f̄1, f̄2 6= 0, and as ē = f̄1 + f̄2 is an orthogonal idempotent
decomposition, we have that ē is not primitive.

Conversely, if ē is not primitive, then ē = f̄1 + f̄2, for f̄1, f̄2 ∈ ā orthognal
idempotents. Consider the K-algebra eAe. By previous lemma, we have
eAe = ēĀē. Notice that f̄1, f̄2 ∈ ēĀē. By part 2, f̄1 can be lifted as an idem-
potent f1 ∈ eAe. Define f2 = e− f1, which lifts f̄2. Then e = f1 + f2 is an
orthogonal decomposition of e, and it is not primitive.

5. Let e∈ A be an idempotent, and ē = ∑
r
i=1 gi be an orthogonal decomposition.

We prove the statement by induction on r. If r = 1 there is nothing to prove.
We work in the K-algebra eAe. We have that g1 ∈ ēāē as before, and we can
lift it as an idempotent f1 ∈ eAe. Then e = f1 +(e− f1) is an orthogonal

decomposition (in eAe). Hence ē = g1 +
r

∑
i=2

gr︸ ︷︷ ︸
=e− f1

. By induction hypothesis, the

decomposition e− f1 =∑
r
i=2 gi lifts as an orthogonal decomposition e− f1 =

∑
r
i=2 fi. So e = ∑

r
i=1 fi is an orthogonal decomposition lifting ē = ∑

r
i=1 gi.

Theorem 5.0.10. Let A be a finite dimentional K-algebra.

1. If e ∈ A is a primitive idempotent, then the indecomposable projective A-
module Ae has a unique maximal submodule J(A)e. In other words, Ae has
a unique simple quotient, namely Ae/J(A)e = Āē.

2. Let e, f ∈ A be two primitive idempotents, then Ae ∼= A f if and only if Āē ∼=
Ā f̄ .

3. There is a bijection{
iso. classes of

indec. projective A-mods.

}
←→

{
iso. classes of

simple A-mods.

}
mapping the class of Ae to the class of Āē.

Proof. The K-algebra projection map A −→ Ā sends Ae to Āē. If e is primitive,
then so is ē, by previous theorem. So Āē is a projective indecomposable Ā-module.
However, Ā is semisimple. So Āē is simple as a Ā-module, and also as a A-module
(with J(A) acting as zero, the classical restriction of scalars). Moreover, any simple
A-module has this form, because J(A) must act by zero on it (by definition of the
Jacobson radical).



32 CHAPTER 5. LIFTING IDEMPOTENTS

1. We have seen that J(A)e is a maximal submodule of Ae, because Āē is simple.
Let M be a maximal submodule of Ae. Then Ae/M is simple, therefore
J(A)(Ae/M) = 0, and so J(A)Ae≤M, that is J(A)e≤M ≤ Ae. Since J(A)e
is maximal, we have M = J(A)e.

2. We use the bijection of theorem 4.2.5. We have Ae∼= A f if and only if e and
f are conjugate in A, if and only if ē and f̄ are conjugate in Ā, if and only if
Āē∼= Ā f̄ .

3. This is a consequence of the previous points.
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The Wedderburn–Malcev
theorem

Definition 6.0.11 (Split algebra). Let A be a finite dimentional K-algebra. It is said
to be split if

1. it is semisimple,

2. EndA S =K, for every simple A-module S.

Remark 6.0.12. Take A a semisimple K-algebra. The by Wedderburn theorem, we
have that

A∼= ∏
i

Mni(Di).

Then A is split if and only if Di =K, since Di = (EndA Si)
op.

Examples 6.0.13. 1. If K is algebraically closed, then every semisimple alge-
bra is split, by Schur’s lemma.

2. Consider RQ8, the R-group algebra of the quaternion group of order 8. Then
RQ8 ∼= R4×H, which is non split (see exercise 2 of sheet 5).

Lemma 6.0.14. Let A = A1×A2 be a direct product of two finite dimentional K-
algebras. Let e ∈ A be a primitive idempotent.

1. Then either e = (e1,0), where e1 ∈ A1 is a primitive idempotent, or e =
(0,e2), where e2 ∈ A2 is a primitive idempotent.

2. A primitive orthogonal decomposition of 1 ∈ A is obtained by a primitive
orthogonal decomposition of 1 ∈ A1 and 1 ∈ A2.

Proof. 1. Let e∈ (e1,e2)∈ A be a primitive idempotent. Then e2 = e, so e1 and
e2 are idempotents, and so are (e1,0) and (0,e2). Moreover, e = (e1,0)+
(0,e2) is an orthogonal decomposition, so either e1 = 0, or e2 = 0.

33
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2. Clear since 1A = (1A1 ,1A2) = (1A1 ,0)+(0,1A2) is an (not necessarily primi-
tive) orthogonal decomposition.

Lemma 6.0.15. Let A = Mn(K) be a split simple algebra over K.

1. An idempotent e ∈ A is primitive if and only if e is a projection matrix onto
a one dimentional subspace of Kn.

2. Every primitive idempotents are conjugate.

3. The number of primitive idempotents in a primitive orthogonal decompo-
sition of In is n. More precisely, In = ∑

n
j=1 E j, j. By part 2, there exists

U j ∈ GLn(K) such that E j, j =U−1
j E1,1U j.

4. The elements {U−1
j E1,1Uk} form a K-basis of Mn(K). If the U j are transpo-

sition matrices, then the basis is precisely the canonical basis.

Proof. Already done in an exercise sheet. For point 4. : if U j are permutation
matrices, then the result is clear. If not, then

(U−1
j E1,1Uk)(U−1

p E1,1Uq) =U−1
j Uk(U−1

k E1,1Uk)(U−1
p E1,1Up)U−1

p Uq

=U−1
j UkEk,kEp,pU−1

p Uq

is either 0 os another element of the set. We hence have an orthogonality relation.

Theorem 6.0.16 (Wedderburn–Malcev). Let A be a finite dimentional K-algebra
such that A/J(A) is a split algebra. Let π : A−� A/J(A) : a 7−→ ā be the quotient
map.

1. There is a semsimple subalgebra S ≤ A such that π|S is an isomorphism. In
other words there is a section σ : A/J(A)−→ A of π .

2. If T ≤ A is another semisimple subalgebra such that π|T is an isomorphism,
then T and S are conjugate. In other words, the section of π is unique up to
conjugacy.

Remark 6.0.17. Let A be a finite dimentional K-algebra. Then A is separable if

1. A is semisimple,

2. consider the Wedderburn decomposition A∼= ∏i Mni(Di), then Z(Di)/K is a
separable extension.

The Wedderburn–Malcev theorem also holds for algebra A such that A/J(A) is
separable.
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Symmetric algebras

7.1 Definition

Definition 7.1.1. Let A be a finite dimentional K-algebra. Let M be a finitely
generated left A-module. The dual of M is defined as M∗ = HomK(M,K) endowed
with the following structure of right A-module : if f ∈M∗ and a ∈ A, then

f a : M −→K
m 7−→ f (am).

Proposition 7.1.2. Let A be a finite dimentional K-algebra. The following are
equivalent :

1. There is an isomorphism of right A-modules φ : AA −→ (AA)∗ which is sym-
metric : φ(a)(b) = φ(b)(a), for every a,b ∈ A.

2. There exists a symmetric non degenerate bilinear form β on A that is symmet-
ric and associative, i.e. such that β (ab,c) = β (a,bc), for every a,b,c ∈ A.

3. There is a linear form λ : A−→K which is symmetric, i.e. λ (ab) = λ (ba),
∀a,b ∈ A, such that kerλ doesn’t contain any right ideal of A.

Proof.

1. ⇐⇒ 2. From a symmetric φ : AA −→ (AA)∗ we can construct a symmetric β defined
as β (a,b) = φ(a)(b). Then, φ is an isomorphism if and only if β is non
degenerate (as we are in finite dimentional vector spaces). The associativity
is routine verifications.

2. ⇐⇒ 3. If β : A×A−→K is symmetric associative, then define λ by λ (a) = β (a,1).
Since β is associative, we have λ (ab) = β (ab,1) = β (a,b). Since β is sym-
metric, λ is too. Conversely, if λ is linear symmetric, then define β (a,b) =

35
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λ (ab). Since λ is symmetric, β is too. Moreover, β is associative because
multiplication in A is too. Consider the following :

β (a,x) = 0 ∀x ∈ A

⇐⇒ λ (ax) = 0 ∀x ∈ A

⇐⇒ aA≤ kerλ

⇐⇒ kerλ cont. a right. ideal. cont. a.

Then it is clear that β is non degenerate if and only if kerλ doesn’t contain
any right ideal.

Definition 7.1.3 (Symmetric algebra). Let A be a finite dimentional K-algebra.
Then A is called symmetric if one (and hence all) of the conditions of proposi-
tion 7.1.2 hold. If this case, the linear form λ is called a symmetrising form1. A
symmetrizing form may not be unique.

Examples 7.1.4. 1. A = Mn(K) is symmetric with symmetrizing form

tr : Mn(K)−→K.

Indeed, we know that tr is linear and that tr(XY ) = tr(Y X), ∀X ,Y ∈Mn(K).
Next, we have a canonical basis {Ep,q}p,q of Mn(K). In order to prove that
the associated bilinear form β (X ,Y ) = tr(X ,Y ) is non degenerate, it suffices
to find a dual basis. Here it is {Eq,p}p,q because Ep,qEr,s = δq,rEp,s, and
therefore

β (Ep,qEr,s) = tr(Ep,qEr,s) = δq,rδp,s.

Then clearly, β is non degenerate. Remark that a typical right ideal in Mn(K)

has form


0
...
Kn

...
0

 6≤ ker tr.

2. Let G be a finite group. The group algebra KG is symmetric with symmetriz-
ing form

λ : KG−→K

g 7−→
{

1 if g = 1
0 ow.

1“forme symmétrisante” in french
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Then λ (gh) = 1 if and only if g and h are mutually inverse. Hence λ (hg) = 1
if and only if g and h are mutually inverse. By linearity, λ is symmetric. The
corresponding bilinear form is given by

β : KG×KG−→K

(g,h) 7−→
{

1 if g = h−1

0 ow.

Remark that {g−1}g∈G is a dual basis of {g}g∈G, and hence β is non degen-
erate.

7.2 Injective modules

Lemma 7.2.1. Let R be a ring and let I be a finitely generated left R-module. The
following are equivalent :

1. For any injective homomorphism j : L −→M between finitely generated R-
modules, and for any homomorphism φ : L−→ I, there exists lift φ̃ : M −→ I
such that the following diagram commutes :

L M

I.

j

φ

φ̃

2. Any injective homomorphism I −→M admit a retraction.

Proof.

1. =⇒ 2. Take L = I and φ = idI .

2. =⇒ 1. With a huge loss of generality, we consider R to be a finite dimentional K-
algebra. Take L, M, j and φ as in point 1. and apply duality :

L∗ M∗

I∗.

j∗

φ ∗
?

Then I∗ is projective, j∗ is surjective, and there exists φ̃ ∗ lifting φ ∗. Since we
consider finite dimentional modules over K, dualization (−)∗ is involutive.
Hence φ̃ ∗

∗
lifts (φ ∗)∗ = φ .
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Definition 7.2.2 (Injective module). A R-module I satisfying one (and hence all)
condition of lemma 7.2.1 is called an injective module.

Lemma 7.2.3. Let M be a finitely generated left A-module. Then M is projective if
and only if M∗ is injective as a right A-module.

Proof. Easy.

Exercise 7.2.4. If A is a symmetric algebra, the isomorphism AA ∼= (AA)
∗ of left

A-modules is also an isomorphism of right modules.

Proposition 7.2.5. Let A be a finite dimentional symmetric K-algebra. Then pro-
jective and injective modules coincide. We also say that A is self-injective.

Proof. AA is a free right A-module hence projective. Therefore (AA)
∗ is an injective

left A-module. Since (AA)
∗ ∼= AA we have that AA is injective. Then (AA)⊕n is

injective (exercise), and any direct summand P of (AA)⊕n is injective (exercise
again). Hence all projective modules are injective. Dualize for the converse.

Definition 7.2.6 (Socle of a module). Let M be a finitely generated A-module.
Then the socle of M, written socM is the sum of all simple submodules of M. It is
also the largest semisimple submodule of M.

Remark 7.2.7. 1. We know that indecomposable projective A-modules have a
unique simple quotient. By duality, and using exercise 1 of sheet 12, we have
that any indecomposable injective submodule have a unique simple submod-
ule. Moreover, we have a bijection{

iso. classes of
indec. injective A-mods.

}
←→

{
iso. classes of

simple A-mods.

}
which associates to an injective module I its socle soc I.

2. If A is symmetric, then projective and injective modules coincide, and there-
fore any projective indecomposable module P have both a unique simple
quotient P/J(P) and a unique simple submodule socP.

Theorem 7.2.8. Let A be a symmetric finite dimentional K-algebra, and let P be
an indecomposable projective A-module. Then P/J(P)∼= socP.

Proof. We know that P ∼= Ae, where e is a primitive idempotent of A, and that
P/J(P) = Ae/J(A)e. The socle socAe is a left ideal of A, hence not contained
in kerλ , where λ : A −→ K is a symmetrizing form. Let a ∈ socAe be such that
λ (a) 6= 0. We have a = ae, therefore 0 6= λ (a) = λ (ae) = λ (ea), and ea 6= 0.

φ : Ae−→ socAe

xe 7−→ xea.
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Clearly, φ is a homomorphism of left A-modules. It is non zero as φ(e) = ea 6=
0. As socAe is simple, we have that φ is surjective. Moreover, φ induces an
isomorphism Ae/kerφ ∼= socAe. As Ae have a unique simple quotient, we have
that Ae/J(A)e∼= Ae/kerφ , and so P/J(P)∼= socP.

Example 7.2.9. Let Q be a quiver without oriented cycles, so KQ is finite dimen-
tional.

• Trivial case : no arrow. Then KQ ∼=Kn, where n is the number of vertex of
Q. Hence KQ is split semisimple, hence symmetric (exercise 5.a, sheet 12).

• Non trivial cases : there is at least one arrow. We want to prove that KQ
isn’t symmetric. Let v be the target of an arrow, and lv be the empty path
at v, which is a primitive idempotent of KQ. Then Pv = KQlv is projec-
tive indecomposable (in fact, it is spanned by all paths ending at v). Also,
Pv/J(Pv) =KQlv/J(KQ)lv is a one dimentional simple module generated by
the class of lv.

Let u be the origin of a maximal path π ending at v. Then there is no arrow
with target u be maximality. Therefore KQlu = Klu is simple. There is a
homomorphism of left KQ-modules

mπ : KQlu =Klu −→KQlv
lu 7−→ luπ.

Since Klu is one dimentional and luπ 6= 0, we have that mπ is injective.
Therefore the simple module KQlu =Klu corresponding to lu is isomorphic
to a submodule of the projective module KQlv corresponding to lv. Hence
KQlv has a simple submodule Klu in its socle, and this simple submodule
is not isomorphic to KQlv/J(KQlv). By the previous theorem, KQ is not
symmetric.
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Chapter 8

Finite representation type

8.1 Definition

Definition 8.1.1. Let A be a finite dimentional K-algebra. We say that A has fi-
nite representation type if there are finitely many isomorphism classes of finitely
generated indecomposable left A-modules.

Lemma 8.1.2. A = K[X ]/(Xn) is symmetric, where n ≥ 1. In particular, AA is an
injective module.

Proof. Let x be the class of X in A, so xn = 0. Obviously, 1,x, . . . ,xn−1 is a K-basis
of A. We claim that the only ideals of A are Axi, for 0≤ i≤ n. Indeed, an ideal I of
A has the form I = J/(Xn), where J is an ideal of K[X ] containing Xn. But K[X ] is
a PID, and so J = ( f ), for f ∈K[X ] monic, and f |Xn. Hence, f = X i for 0≤ i≤ n,
which proves the claim. Define

λ : A−→K
xi 7−→ 1.

Clearly, λ is symmetric, and kerλ doesn’t not contain any nonzero ideal of A.

Remark 8.1.3. The algebra A =K[X ]/(Xn) is called the algebra of truncated poly-
nomials.

Theorem 8.1.4. A =K[X ]/(Xn) has finite representation type. More precisely :

1. the only indecomposable A-modules (up to isomorphism) are A/Axi, for 1≤
i≤ n ;

2. A is uniserial, i.e. any module has a unique composition series.

Proof. By induction on n. If n = 1, then A∼=K, and the result is obvious. Suppose
now n≥ 2, and let M be a finitely generated A-module.

Suppose that there exists m1 ∈M such that xn−1m1 6= 0. Then m1 generates a
submodule Am1 with basis m1,xm1, . . . ,xn−1m1. Indeed, if ∑

n−1
i=0 λixim1 = 0, then

41
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xn−1
∑

n−1
i=0 λixim1 = λ0xn−1m1 = 0, and so λ0 = 0, and repeat with xn−2, etc. There-

fore Am1 is a free module isomorphic to AA, which is itself injective (by the pre-
vious lemma). Hence Am1 is injective as well, and the injection Am1 ↪−→ M has
a retraction, hence M = Am1⊕M2. Suppose that there exists m2 ∈ M2 such that
xn−1m2 6= 0. Then by the same argument, we have M = Am1︸︷︷︸

∼=A

⊕Am2︸︷︷︸
∼=A

⊕M3. Contin-

uing in this way until the initial assumption is false leads to a decomposition

M ∼= Am1⊕·· ·⊕Amk⊕N,

where N is a submodule such that xn−1N = 0.
Hence N can be viewed as a B-module, where B = A/Axn−1 ∼= K[X ]/(Xn−1).

By induction, the only indecomposable B-modules are B/Bxi, for 1 ≤ i ≤ n− 1.
Therefore N ∼=

⊕
i(B/Bxi)⊕ki . Clearly, B/Bxi ∼= (A/An−1)/(Axi/Axn−1) ∼= A/Axi.

We view B/xiB as a left A-module (with xn−1) acting by 0.
This proves that M decomposes as a direct sum of modules of the form A/Axi.

We need to show that each module A/Axi is indeed indecomposable. We know that
EndR R∼= Rop, for any ring R. In particular, we have an isomorphism

EndA(A/Axi)←→ (A/Axi)
op = A/Axi

f 7−→ f (1̄)

mā←−[ ā.

Now A/Axi ∼= K[X ]/(X i) is a local ring with maximal ideal Ax/Axi because the
only maximal ideal of K[X ] containing X i is (X). Hence, since EndA(A/Axi) is
local, we have that A/Axi is indecomposable. This proves that A has finite repre-
sentation type, with n indecomposable modules (up to isomorphism).

For uniseriality1, remark that the only ideals of K[X ] containing Xn are (Xn)>
·> (X). Therefore, the only ideals of A=K[X ]/(Xn) are A>Ax> · · ·>Axn−1 > 0.
This proves that AA is uniserial, and so are any of its quotients A/Axi.

Remark 8.1.5. Axi is an indecomposable submodule of AA. It is in fact it is isomor-
phic to A/Axn−i with

A/Axn−i −→ Axi

1̄ 7−→ xi

x̄ 7−→ xi+1

...

x̄n−i 7−→ xn = 0.

1is this even a real word ?
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8.2 Group algebras of finite representation type

Let G be a finite group. Then A =KG is finite dimentional.

1. If charK = 0 or charK = p and p 6 ||G|, then by Maschke theroem, KG is
semisimple. Then every indecomposable module is simple and in particular,
there are finitely many of them, up to isomorphism. Thus KG is of finite
representation type.

2. If charK= p, and if G is a p-group, i.e. |G|= pn for some n ∈ N∗, then we
obtain theorem 8.2.2.

3. If charK= p which divides |G|, then some standard method called induction
and restriction allow to pass from a p-Sylow subgroup of G to the whole of
G, and we obtain theorem 8.2.3.

Lemma 8.2.1. Let G be a finite p-group, with p prime.

1. Any maximal subgroup of G is normal and has index p.

2. If there is a unique maximal subgroup, then G is cyclic.

3. If there is at least two distinct maximal subgoups, then G has a quotien
isomorphic to C2

p.

Proof. 1. By induction on n, where |G| = pn. If n = 1, then G is cyclic and 1
is the only maximal subgroup, which of course has index p. Suppose n≥ 2,
and let M be a maximal subgroup. We use the fact that Z = Z(G) is non
trivial (consequence of the class equation). We have two cases :

(a) Z ≤M, then M/Z is a maximal subgroup of G/Z. Since |G/Z| < |G|,
induction tells us that M/Z is normal, and has index p. It follows that
M is normal in G with index p.

(b) Z 6≤M, then M < ZM, and the later is a subgroup since Z is normal. So
ZM = G by maximality of M. Let g ∈ G, then g = zm with z ∈ Z, m ∈
M. Then gMg−1 = zmMm−1z−1 = zMz−1 = M. Hence M is normal.
Moreover GM = H is a group without any subgroup apart from 1 and
H. Hence H ∼=Cp and M has index p

2. Suppose M is the unique maximal subgroup of G. Let g ∈ G\M. Then (g)
is not contained in M, hence not contained in any maximal subgoup, hence
(g) = G, and G is cyclic.

3. Suppose that M1 and M2 are two distince maximal subgroups of G. Then
M1 < M1M2 ≤ G, and by maximality of M1 we have M1M2 = G. Let N =
M1 ∩M2. By the second isomorphism theorem, we have G/M1 ∼= M2/N
and similarily, G/M2 ∼= M1/N. The obvious group homomorphism G −→
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G/M1×G/M2 ∼= C2
p has kernel N. Therefore it induces an injective map

G/N −→C2
p. However |G/N|= p2 and so G/N ∼=C2

p.

Theorem 8.2.2. With the assumptions of point 2., i.e. charK = p and G is a p-
group, KG has finite representation type if and only if G is cyclic. More precisely,

1. If G is cyclic, then KG is uniserial and there are |G| indecomposable mod-
ules up to isomorphism.

2. If G is not cyclic, then KG has a quotient isomorphic to K[X ,Y ]/(X2,Y 2,XY ),
which has infinite representation type.

Proof. 1. If G is cyclic, let x = g− 1 ∈ KG, where g is a generator of G, and
define

φ : K[X ]−→KG

X 7−→ x = g−1.

It is a surjective algebra homomorphism because φ(X + 1) = g, φ((X +
1)k) = gk, and imφ contains a basis of KG. Now xpn

= (g− 1)pn
= gpn −

1 = 0, so kerφ ≥ (X pn
), and φ induces a surjective algebra homomorphism

A = K[X ]/(X pn
) −→ KG. We have dimK A = dimKKG = pn, so A ∼= KG.

We know by theorem 8.1.4 that A is uniserial and of finite representation
type.

2. Suppose G not cyclic. By lemma 8.2.1, there is a normal subgroup N < G
such that G/N ∼=C2

p. Therefore there is a surjective algebra homomorphism
φ : KG−→K(C2

p), and we have an isomorphism (same argument as before)

K[X ,Y ]/(X p,Y p)−→K(C2
p)

X 7−→ g−1

Y 7−→ h−1,

where g is a generator of Cp× 1 and h is a generator of 1×Cp. Now has a
quotient B = K[X ,Y ]/(X2,Y 2,XY ). So KG has a quotient isomorphic to B.
It is shown in example 4.2.6 that B has infinite representation type, provided
that K is infinite. If K is finite, then the same result hold (see exercise 6 of
sheet 13). It follows that KG also have infinite representation type (because
any indecomposable module of a quotient KG/I remains indecomposable
seen as a module over the base ring, on which I acts as 0).

Theorem 8.2.3. With the assumptions of point 3., i.e. charK = p| |G|, KG has
finite representation type if and only if the p-Sylow subgroup of G are cyclic.

Proof. Not treated in this course.
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8.3 Quivers of finite representation type

Let Q be a finite quiver. Suppose that Q has no oriented cycles, so that KQ is finite
dimentional. Associated with Q there is an unoriented graph Q̄ which is Q with
arrows replaced by unoriented edges.

Theorem 8.3.1 (Gabriel, 1972). KQ has finite representation type if and only if
the undirected graph Q̄ is a disjoint union of Dynkin graph.

Proof. Not treated in this course.

This concludes this course about finite dimentional algebra, and is also the last
course of prof. J. Thévenaz given to math students !
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