WTF ARE MONADS WITH ARITIES AND PARAMETRIC RIGHT ADJOINTS?

CHT

A monad with arity allows a powerful nerve theorem. A parametric right adjoint can be constructed from its local left adjoint with very minimal data.

Jesus, Oktoberfest 21 AD, Jerusalem

1. Monads with arities

Let \mathcal{C} be a category with a dense generator $i: \Theta_{0} \hookrightarrow \mathcal{C}$. Note that we have a nerve $N_{0}: \mathcal{C} \longrightarrow \widehat{\Theta_{0}}$ mapping $c \in \mathcal{C}$ to the presheaf $\mathcal{C}(i(-), c)$. Since i is dense, N_{0} is fully faithful (in fact, the converse also hold).

A monad T on \mathcal{C} has arities in Θ_{0} if $T: \mathcal{C} \longrightarrow \widehat{\Theta_{0}}$ takes the canonical Θ_{0}-cocones to colimit cocones in $\widehat{\Theta_{0}}$. Explicitely, if $c \in \mathcal{C}$, then the canonical Θ_{0}-cocone of c is the natural transformation on the left, and the arity condition states that the cocone on the right is colimiting:

Equivalently, the following triangle exhibits $N_{0} T$ as the left Kan extension of $N_{0} T i$ along i :

i.e. $N_{0} T c=\operatorname{colim}_{\theta \rightarrow c} N_{0} T \theta$.

Let \mathcal{C}^{T} be the Eilenberg-Moore category of T. We abuse notations by letting $T: \mathcal{C} \longrightarrow \mathcal{C}^{T}$ be the free algebra functor. Let $i_{T}: \Theta_{T} \hookrightarrow \mathcal{C}^{T}$ the full subcategory spanned by $T \Theta_{0}$. As for i, we obtain a nerve $N_{T}: \mathcal{C}^{T} \longrightarrow \widehat{\Theta_{T}}$. The situation is summarized in the following squares

The left one commutes, but in general, the right one does not.
Theorem 1.1 (Nerve theorem).
(1) The subcategory Θ_{T} is a dense generator of \mathcal{C}^{T}. Equivalently, N_{T} is fully faithful.
(2) A presheaf $X \in \widehat{\Theta_{T}}$ is in the essential image of N_{T} if and only if it satisfies the Segal condition, namely, if $\left.X\right|_{\Theta_{0}} \in \widehat{\Theta_{0}}$ (that is, the restriction of X to free morphisms) is in the essential image of N_{0}

Corollary 1.2 (Leinster). A presheaf $X \in \widehat{\Theta_{T}}$ is Segal if and only if for all $\theta \in \Theta_{0}$, X maps the canonical Θ_{0}-cocone of θ to a limit cone in Set, i.e. the cone on the right is limiting:

Example 1.3. Let $\Theta_{0}=\triangle, \mathcal{C}=\widehat{\Delta}$, and T free category monad, i.e. that which arises from the adjunction $h: \widehat{\Delta} \stackrel{\dashv}{\longleftrightarrow}$ Cat : N. For $[n] \in \Delta, T \Delta[n]=N h \Delta[n]=N[n]=\Delta[n]$, and in particular, $\Theta_{T}=\Delta$. The colimit condition is trivially satisfied for T to have arities in \triangle. The nerve theorem then states that
(1) Δ is a dense generator of $\widehat{\Delta}^{T}=$ Cat, and that N : Cat $\longrightarrow \widehat{\Delta}$ is fully faithful;
(2) since $\Theta_{0}=\Theta_{T}$, the Segal condition doesn't say anything in this case.
Leinster's criterion states that $X \in \widehat{\triangle}$ is a nerve if and only if it maps canonical cocones of the form $\Delta /[n]$ to limit cones in Set, which is the usual Segal condition for simplicial sets.

2. Parametric Right adjoints

Let $F: \mathcal{C} \longrightarrow \mathcal{D}$ be a functor, where \mathcal{C} has a terminal object 1 . Then F factors as

$$
\mathcal{C}=\mathcal{C} / 1 \xrightarrow{F_{1}} \mathcal{D} / F 1 \longrightarrow \mathcal{D}
$$

We say that F is a parametric right adjoint (p.r.a. for short) if F_{1} has a left adjoint L_{F}.

Example 2.1. A polynomial functor $P=t_{!} p_{*} s^{*}$

$$
I \stackrel{s}{\leftarrow} E \xrightarrow{p} B \xrightarrow{t} J
$$

is a p.r.a., where $P_{1}=p_{*} s^{*}$ and $L_{P}=s!p^{*}$.
A morphism $f: D \longrightarrow F C$ in \mathcal{D} is said F-generic if for every solid square

there exist a unique morphism $t: C \longrightarrow A$ filling the diagram.

Theorem 2.2 ([Web07]). Let $F: \mathcal{C} \longrightarrow \mathcal{D}$ be a functor, where \mathcal{C} has a terminal object 1. The following are equivalent:
(1) F is a p.r.a., meaning the sliced functor $F_{1}: \mathcal{C} / 1 \longrightarrow$ $\mathcal{D} / F 1$ has a left adjoint;
(2) for all $C \in \mathcal{C}$, the sliced functor $F: \mathcal{C} / C \longrightarrow \mathcal{D} / F C$ has a left adjoint;
(3) any morphism $f: D \longrightarrow F C$ has a generic-free factorization, i.e. f factors as

$$
D \xrightarrow{g} F B \xrightarrow{F h} F C
$$

where g is F-generic.
Theorem 2.3 ([Web07]). For $F: \widehat{\mathcal{A}} \longrightarrow \widehat{\mathcal{B}}$, the following are equivalent:
(1) F is a p.r.a.;
(2) any morphism $f: b \longrightarrow F 1$ in $\widehat{\mathcal{B}}$ has a generic-free factorization.
If $F: \widehat{\mathcal{A}} \longrightarrow \widehat{\mathcal{B}}$ is a p.r.a. between presheaf categories, then the left adjoint $L_{F}: \widehat{\mathcal{B}} / F 1 \cong \widehat{\mathcal{B} / F 1} \longrightarrow \widehat{\mathcal{A}}$ can be defined as follows. For an element $f: b \longrightarrow F 1$ of $F 1$, let $L_{F} f$ be the object sitting in the middle of the generic-free factorization of f :

$$
b \xrightarrow{\text { generic }} F L_{F} f \xrightarrow{\text { free }} F 1 .
$$

Then, extend L_{F} by left Kan extension along the Yoneda embedding to get $L_{F}: \widehat{\mathcal{B} / F 1} \longrightarrow \widehat{\mathcal{A}}$. Since F_{1} is right adjoint of L_{F}, the classical nerve formula gives

$$
F X_{b}=\sum_{x \in F 1_{b}} \widehat{\mathcal{A}}\left(L_{F} x, X\right)
$$

for $X \in \widehat{\mathcal{A}}$. Note that conversely, F is completely determined by a choice of presheaf $F 1 \in \widehat{\mathcal{B}}$ and a functor $\mathcal{B} / F 1 \longrightarrow \widehat{\mathcal{A}}$.

Let now $T: \widehat{\mathcal{A}} \longrightarrow \widehat{\mathcal{A}}$ be a p.r.a. monad, and Θ_{0} be the full subcategory of $\widehat{\mathcal{A}}$ spanned by the image of $L_{T}: \mathcal{A} / T 1 \longrightarrow \widehat{\mathcal{A}}$. Elements isomorphic to some element of Θ_{0} are called T cardinals.

Proposition 2.4 ([Web07], propositions 4.20 and 4.22).
(1) Representables are T-cardinals.
(2) If p is a T-cardinal and $f: p \longrightarrow T q$ is T-generic, then q is a T-cardinal.
(3) The monad T has arities in Θ_{0}.

Example 2.5. Consider Graph $=[0] \rightrightarrows[1]$, the category of graphs, and T the free category monad. Clearly, a moorphism $f:[1] \longrightarrow T G$ is the data of a path in G, and if it has length n, one can check that the following is a generic-free factorization of f :

$$
1 \xrightarrow{\text { endpoints }} T[n] \xrightarrow{\text { the path }} T G .
$$

Consequently, all the $[n]$ are T-cardinals. On the other hand, a morphism [0] $\longrightarrow T H$ is T-generic if and only if $H \cong[0]$, whence the T-cardinals are exactly the linear graphs $[n]$. Therefore, T has arites in Θ_{0}, the full subcategory of Graph spanned by the $[n]$'s, and $\Theta_{T} \simeq \triangle$.

Example 2.6. For $\widehat{\mathcal{M}}$ the category of multigraphs, where \mathcal{M} is the adequate shape theory, and T the free symmetric multicategory monad, we have $\Theta_{T} \simeq \Omega$, the category of dendrices of [MW07]. 早っ!

References

[BMW12] Clemens Berger, Paul-André Melliès, and Mark Weber. Monads with arities and their associated theories. Journal of Pure and Applied Algebra, 216(8-9):2029-2048, 2012.
[Koc11] Joachim Kock. Polynomial functors and trees. International Mathematics Research Notices, 2011(3):609-673, January 2011.
[Lei04] Tom Leinster. Nerves of algebras. Available at https://www. maths.ed.ac.uk/~tl/vancouver/nerves.pdf, July 2004.
[MW07] Ieke Moerdijk and Ittay Weiss. Dendroidal sets. Algebraic \mathcal{G} Geometric Topology, 7:1441-1470, 2007.
[Web07] Mark Weber. Familial 2-functors and parametric right adjoints. Theory and Applications of Categories, 18:No. 22, 665732, 2007.

