CHT

A monad with arity allows a powerful nerve theorem. A parametric right adjoint can be constructed from its local left adjoint with very minimal data.

Jesus, Oktoberfest 21 AD, Jerusalem

1. Monads with arities

Let \mathcal{C} be a category with a dense generator $i : \Theta_0 \hookrightarrow \mathcal{C}$. Note that we have a nerve $N_0 : \mathcal{C} \longrightarrow \widehat{\Theta}_0$ mapping $c \in \mathcal{C}$ to the presheaf $\mathcal{C}(i(-), c)$. Since *i* is dense, N_0 is fully faithful (in fact, the converse also hold).

A monad T on \mathbb{C} has arities in Θ_0 if $T : \mathbb{C} \longrightarrow \widehat{\Theta_0}$ takes the canonical Θ_0 -cocones to colimit cocones in $\widehat{\Theta_0}$. Explicitly, if $c \in \mathbb{C}$, then the canonical Θ_0 -cocone of c is the natural transformation on the left, and the arity condition states that the cocone on the right is colimiting:

$$\Theta_0/c \xrightarrow[c]{\alpha} \mathcal{C}, \qquad \Theta_0/c \xrightarrow[c]{\alpha} \mathcal{C} \xrightarrow{T} \mathcal{C} \xrightarrow{N_0} \widehat{\Theta_0}.$$

Equivalently, the following triangle exhibits N_0T as the left Kan extension of N_0Ti along *i*:

$$\begin{array}{cccc} \Theta_0 & \stackrel{i}{\longrightarrow} & \mathbb{C} & \stackrel{T}{\longrightarrow} & \mathbb{C} & \stackrel{N_0}{\longrightarrow} & \widehat{\Theta_0} \\ & \stackrel{i}{\downarrow} & & & \\ & & & \\ & & & & \\ & & & & \\ & & & &$$

i.e. $N_0 T c = \operatorname{colim}_{\theta \to c} N_0 T \theta$.

Let \mathcal{C}^T be the Eilenberg-Moore category of T. We abuse notations by letting $T : \mathcal{C} \longrightarrow \mathcal{C}^T$ be the free algebra functor. Let $i_T : \Theta_T \hookrightarrow \mathcal{C}^T$ the full subcategory spanned by $T\Theta_0$. As for i, we obtain a nerve $N_T : \mathcal{C}^T \longrightarrow \widehat{\Theta_T}$. The situation is summarized in the following squares

$$\begin{array}{cccc} \Theta_T & \stackrel{i_T}{\longrightarrow} & \mathbb{C}^T & & \mathbb{C}^T & \stackrel{N_T}{\longrightarrow} & \widehat{\Theta_T} \\ T & \uparrow & \uparrow T & & U \downarrow & & \downarrow -|_{\Theta_0} \\ \Theta_0 & \stackrel{i}{\longrightarrow} & \mathbb{C}, & & \mathbb{C} & \stackrel{N_0}{\longrightarrow} & \widehat{\Theta_0}. \end{array}$$

The left one commutes, but in general, the right one does not.

Theorem 1.1 (Nerve theorem).

- (1) The subcategory Θ_T is a dense generator of \mathfrak{C}^T . Equivalently, N_T is fully faithful.
- (2) A presheaf X ∈ Θ_T is in the essential image of N_T if and only if it satisfies the Segal condition, namely, if X|_{Θ0} ∈ Θ₀ (that is, the restriction of X to free morphisms) is in the essential image of N₀

Corollary 1.2 (Leinster). A presheaf $X \in \widehat{\Theta}_T$ is Segal if and only if for all $\theta \in \Theta_0$, X maps the canonical Θ_0 -cocone of θ to a limit cone in Set, *i.e.* the cone on the right is limiting:

$$\Theta_0/\theta \hspace{0.5cm} \overbrace{\hspace{0.5cm} \theta}^{\alpha} \hspace{0.5cm} \Theta_0, \hspace{0.5cm} \Theta_0^{\mathrm{op}}/\theta \hspace{0.5cm} \overbrace{\hspace{0.5cm} \theta}^{\alpha} \hspace{0.5cm} \Theta_0^{\mathrm{op}} \hspace{0.5cm} \xrightarrow{X} \hspace{0.5cm} \mathbb{S}\mathrm{et}.$$

Example 1.3. Let $\Theta_0 = \mathbb{A}$, $\mathcal{C} = \widehat{\mathbb{A}}$, and T free category monad, i.e. that which arises from the adjunction $h : \widehat{\mathbb{A}} \xleftarrow{\dashv} \mathcal{C}$ \mathcal{C} at : N. For $[n] \in \mathbb{A}$, $T\Delta[n] = Nh\Delta[n] = N[n] = \Delta[n]$, and in particular, $\Theta_T = \mathbb{A}$. The colimit condition is trivially satisfied for T to have arities in \mathbb{A} . The nerve theorem then states that

- (1) \triangle is a dense generator of $\widehat{\triangle}^T = \mathbb{C}$ at, and that N : \mathbb{C} at $\longrightarrow \widehat{\triangle}$ is fully faithful;
- (2) since $\Theta_0 = \Theta_T$, the Segal condition doesn't say anything in this case.

Leinster's criterion states that $X \in \widehat{\mathbb{A}}$ is a nerve if and only if it maps canonical cocones of the form $\mathbb{A}/[n]$ to limit cones in Set, which is the usual Segal condition for simplicial sets.

2. PARAMETRIC RIGHT ADJOINTS

Let $F : \mathcal{C} \longrightarrow \mathcal{D}$ be a functor, where \mathcal{C} has a terminal object 1. Then F factors as

$$\mathfrak{C} = \mathfrak{C}/1 \xrightarrow{F_1} \mathfrak{D}/F1 \longrightarrow \mathfrak{D}.$$

We say that F is a *parametric right adjoint* (p.r.a. for short) if F_1 has a left adjoint L_F .

Example 2.1. A polynomial functor $P = t_! p_* s^*$

$$I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J$$

is a p.r.a., where $P_1 = p_* s^*$ and $L_P = s_! p^*$.

A morphism $f: D \longrightarrow FC$ in \mathcal{D} is said *F*-generic if for every solid square

$$D \xrightarrow{x} FA$$

$$f \downarrow \qquad f^{h} \xrightarrow{\gamma} \downarrow F_{2}$$

$$FC \xrightarrow{Fz} FB$$

there exist a unique morphism $t: C \longrightarrow A$ filling the diagram.

Theorem 2.2 ([Web07]). Let $F : \mathcal{C} \longrightarrow \mathcal{D}$ be a functor, where \mathcal{C} has a terminal object 1. The following are equivalent:

- (1) F is a p.r.a., meaning the sliced functor $F_1 : \mathbb{C}/1 \longrightarrow \mathbb{D}/F1$ has a left adjoint;
- (2) for all $C \in \mathbb{C}$, the sliced functor $F : \mathbb{C}/C \longrightarrow \mathbb{D}/FC$ has a left adjoint;
- (3) any morphism $f: D \longrightarrow FC$ has a generic-free factorization, i.e. f factors as

$$D \xrightarrow{g} FB \xrightarrow{Fh} FC$$

where g is F-generic.

Theorem 2.3 ([Web07]). For $F : \widehat{\mathcal{A}} \longrightarrow \widehat{\mathcal{B}}$, the following are equivalent:

- (1) F is a p.r.a.;
- (2) any morphism $f: b \longrightarrow F1$ in $\widehat{\mathbb{B}}$ has a generic-free factorization.

If $F : \widehat{\mathcal{A}} \longrightarrow \widehat{\mathcal{B}}$ is a p.r.a. between presheaf categories, then the left adjoint $L_F : \widehat{\mathcal{B}}/F1 \cong \widehat{\mathcal{B}/F1} \longrightarrow \widehat{\mathcal{A}}$ can be defined as follows. For an element $f : b \longrightarrow F1$ of F1, let $L_F f$ be the object sitting in the middle of the generic-free factorization of f:

$$b \xrightarrow{\text{generic}} FL_F f \xrightarrow{\text{free}} F1$$

Then, extend L_F by left Kan extension along the Yoneda embedding to get $L_F: \widehat{\mathcal{B}/F1} \longrightarrow \widehat{\mathcal{A}}$. Since F_1 is right adjoint of L_F , the classical nerve formula gives

$$FX_b = \sum_{x \in F1_b} \widehat{\mathcal{A}}(L_F x, X)$$

for $X \in \widehat{\mathcal{A}}$. Note that conversely, F is completely determined by a choice of presheaf $F1 \in \widehat{\mathcal{B}}$ and a functor $\mathcal{B}/F1 \longrightarrow \widehat{\mathcal{A}}$.

Let now $T: \widehat{\mathcal{A}} \longrightarrow \widehat{\mathcal{A}}$ be a p.r.a. monad, and Θ_0 be the full subcategory of $\widehat{\mathcal{A}}$ spanned by the image of $L_T: \mathcal{A}/T1 \longrightarrow \widehat{\mathcal{A}}$. Elements isomorphic to some element of Θ_0 are called *T*cardinals.

- Proposition 2.4 ([Web07], propositions 4.20 and 4.22).
 - (1) Representables are T-cardinals.
 - (2) If p is a T-cardinal and $f : p \longrightarrow Tq$ is T-generic, then q is a T-cardinal.
 - (3) The monad T has arities in Θ_0 .

Example 2.5. Consider $\text{Graph} = [0] \rightrightarrows [1]$, the category of graphs, and T the free category monad. Clearly, a moorphism $f:[1] \longrightarrow TG$ is the data of a path in G, and if it has length n, one can check that the following is a generic-free factorization of f:

$$\xrightarrow{\text{endpoints}} T[n] \xrightarrow{\text{the path}} TG.$$

Consequently, all the [n] are *T*-cardinals. On the other hand, a morphism $[0] \longrightarrow TH$ is *T*-generic if and only if $H \cong [0]$, whence the *T*-cardinals are exactly the linear graphs [n]. Therefore, *T* has arites in Θ_0 , the full subcategory of Graph spanned by the [n]'s, and $\Theta_T \simeq \mathbb{A}$.

Example 2.6. For $\widehat{\mathcal{M}}$ the category of multigraphs, where \mathcal{M} is the adequate shape theory, and T the free symmetric multicategory monad, we have $\Theta_T \simeq \Omega$, the category of dendrices of [MW07]. $\mathbb{P} \supset$!

References

- [BMW12] Clemens Berger, Paul-André Melliès, and Mark Weber. Monads with arities and their associated theories. Journal of Pure and Applied Algebra, 216(8-9):2029–2048, 2012.
- [Koc11] Joachim Kock. Polynomial functors and trees. International Mathematics Research Notices, 2011(3):609–673, January 2011.
- [Lei04] Tom Leinster. Nerves of algebras. Available at https://www. maths.ed.ac.uk/~tl/vancouver/nerves.pdf, July 2004.
- [MW07] Ieke Moerdijk and Ittay Weiss. Dendroidal sets. Algebraic & Geometric Topology, 7:1441–1470, 2007.
- [Web07] Mark Weber. Familial 2-functors and parametric right adjoints. Theory and Applications of Categories, 18:No. 22, 665– 732, 2007.