WTF IS KOSZUL DUALITY?

CHT

Did you know you could kill someone by dropping [LV12] on its head?

1. Fiber bundles

A fiber bundle [Hat02] (also called locally trivial fiber bundle) $F \longrightarrow E \xrightarrow{p} B$ is a "short exact sequence of spaces", more precisely, it is a continuous map p such that every point $b \in B$ has an open neighborhood $b \in U$ for which there is a homeomorphism $h: p^{-1}(U) \longrightarrow U \times F$, called local trivialization, making the following triangle commute

The space F is called the fiber, E is the total space, and B is the base space. Examples include trivial bundles $F \longrightarrow$ $F \times B \longrightarrow B$, but also the Möbius strip $D^{1} \longrightarrow M \longrightarrow S^{1}$, the Klein bottle $S^{1} \longrightarrow K^{2} \longrightarrow S^{1}$, and the Hopf fibrations. Also, a fiber bundle with discrete fiber is a covering space.
Theorem 1.1. Let $F \longrightarrow E \xrightarrow{p} B$ be a fiber bundle. Then $p_{*}: \pi_{n}(E, F) \longrightarrow \pi_{n} B$ is an isomorphism (basepoints are left implicit). Thus, if B is path-connected, the long relative exact sequence becomes

$$
\cdots \rightarrow \pi_{n+1} B \rightarrow \pi_{n} F \rightarrow \pi_{n} E \rightarrow \pi_{n} B \rightarrow \pi_{n-1} F \rightarrow \cdots
$$

2. Simplicial twisting maps

This section quickly surveys [May92], and we only deal with simplicial sets.

A map $p: E \longrightarrow B$ of simplicial sets is called a fiber bundle of fiber F if for every cell $b: \Delta[n] \longrightarrow B$, the projection $\Delta[n] \times{ }_{B} E \longrightarrow \Delta[n]$ of the following pullback

is isomorphic to the projection $\Delta[n] \times F$. If F is a Kan complex, then p is a Kan fibration. The bundle is said trivial if $E=F \times B$ and p is just the projection.

Let G be a simplicial group (thus a Kan complex) acting on the left on E, which we write $G \circlearrowleft E$. The action is said effective if $\forall g \in G$, if g acts like the unit 1 , then $g=1$; it is said principal if $\forall g \in G, \forall x \in E$, if $g x=x$, then $g=1$.

If $G \circlearrowleft E$ principally, then we obtain what we call a principal fiber bundle $F \longrightarrow E \xrightarrow{p} B=G \backslash E$. It seems clear that it is a fiber bundle, but I could not find that statement anywhere... A cross section (or just section) of p is a map $\sigma: B \longrightarrow E$ such that $p \sigma=\operatorname{id}_{B}$. It exists only if the bundle is trivial. Thus we relax the constraints on σ and allow it to
not preserve the 0 -th face operator d_{0}, and call such a map a pseudo cross section (or just pseudo section).

The following way of relating twisted cartesian products and twisting map is taken from [Pro11], which is itself based on [May92]. Note that for such a pseudo cross section σ, and $b \in B$,

$$
p \sigma d_{0}(b)=d_{0}(b)=d_{0} p \sigma(b)=p d_{0} \sigma(b)
$$

and thus $\sigma d_{0}(b)$ and $d_{0} \sigma(b)$ lie in the same fiber of p. Since the action of G is principal, there exist a unique $\tau(b) \in G$ such that $d_{0} \sigma(b)=\sigma d_{0}(b) \cdot \tau(b)$. The map $\tau: B \longrightarrow G$ of degree -1 (meaning $\tau B_{n} \subseteq G_{n-1}$) satisfies the following properties

$$
\begin{aligned}
d_{0} \tau(b) & =\left(\tau d_{0}(b)\right)^{-1} \cdot \tau d_{1}(b), & & \\
d_{i} \tau(b) & =\tau d_{i+1}(b) & & i \geq 1 \\
s_{i} \tau(b) & =\tau s_{i+1}(b) & & i \geq 0 \\
\tau s_{0}(b) & =1 & &
\end{aligned}
$$

A map of degree -1 satisfying those properties is called a twisting map. Interestingly, τ is enough to recover the pseudo section σ. The twisted cartesial product $E=B \times_{\tau} G$ is the usual cartesian product $B \times G$, but where the 0 -th face operator has been replaced by

$$
d_{0}(b, g)=\left(d_{0}(b), \tau(b) \cdot d_{0}(g)\right)
$$

the fibration $p: E \longrightarrow B$ maps (b, g) to b, and the pseudo section σ maps b to $(b, 1)$. This construction exhibits a bijection between cross section of principal G-bundles over B and twisting map $B \longrightarrow G$.
2.1. Simplicial bar and cobar. The \mathfrak{W} and \mathfrak{G} constructions presented here are covered in [May92] and briefly discussed in [Pro11].

Let G be a simplicial group, and consider the category \mathcal{B}_{G} of tuples (X, τ), where X is a simplicial set and $\tau: X \longrightarrow G$ is a twisting map. Then \mathcal{B}_{G} has a terminal object $\mathfrak{W}(G) \longrightarrow G$ which may be thought as a "bar construction on G ".

Dually, if X is a reduced $\left(X_{0}=\{*\}\right)$ simplicial set, let \mathcal{C}_{X} be the category of tuples (G, τ), where $\tau: X \longrightarrow G$ is a twisting map. Then \mathcal{C}_{X} has an initial object $X \longrightarrow \mathfrak{G}(X)$, which may be thought as a "cobar construction on X ".

Theorem 2.1. The canonical morphism $G W(G) \longrightarrow G$ and $X \longrightarrow W G(X)$ are homotopy equivalences.

3. Homological twisting maps

3.1. Intermezzo in derived algebra. See [Yek20]. A dgring \mathbb{k} is a graded algebra $\left(\mathbb{k}_{i} \mathbb{k}_{j} \subseteq \mathbb{k}_{i+j}\right)$ over a ground ring, with a differential ∂ satisfying the graded Leibniz rule

$$
\partial(a b)=\partial(a) b+(-1)^{|a||b|} a \partial(b)
$$

It is said weakly commutative if $a b=(-1)^{|a||b|} b a$, and strongly commutative if it is weakly commutative, and if $a a=0$ for all odd a (i.e. $|a|$ odd). If the ground ring is not of caracteristic 2, the two notions are equivalent. Any ring can be seen as a dg-ring concentrated in degree 0 .

A \mathbb{k}-dg-module is a dg-module $M=\bigoplus_{i} M_{i}$ with a graded action $\mathbb{k}_{i} M_{j} \subseteq M_{i+j}$ satisfying

$$
\partial(a m)=\partial(a) m+(-1)^{|a|} a \partial(m)
$$

Let $d g \mathcal{A l} g_{\mathbb{k}}$ be the category of differential graded \mathbb{k}-algebras. The tensor product of $M, N \in d g \mathcal{A l g} g_{k}$ is given by

$$
(M \otimes N)_{n}=\bigoplus_{i+j=n} M_{i} \otimes N_{j}
$$

with differential

$$
\partial(m \otimes n)=\partial(m) \otimes n+(-1)^{|m|} m \otimes \partial(n) .
$$

The inner hom is given by

$$
\operatorname{hom}(M, N)_{n}=\bigoplus_{i} \mathcal{A l g} g_{\mathfrak{k}}\left(M_{i}, N_{i+n}\right)
$$

with differential

$$
\partial(\phi)=\partial \circ \phi-(-1)^{|\phi|} \phi \circ \partial .
$$

Note the minus in the middle, and that ϕ is an even cocycle if and only if $\partial \circ \phi=\phi \circ \partial$, that is, if it is a morphism of dg-algebras.

The following material can be found in [May92, Pro11], and in [LV12], although expressed differently. Let C be a dg-coalgebra with comultiplication D, and A be a dg-algebra with multiplication μ, both over some ground commutative ring \mathbb{k}. In particular, C and A are dg-modules over \mathbb{k} and so we have a dg-module hom (C, A) defined previously. We endow it with a structure of dg-algebra with the following cup product (called convolution product and denoted by \star in [LV12]):

$$
\alpha \smile \beta=\mu(\alpha \otimes \beta) D
$$

If M is a right C-dg-comodule, and N a left A-dg-module, then the \mathbb{k}-tensor $M \otimes N$ has a structure of left $\operatorname{hom}(C, A)$ dg -module with the following cap product

$$
\begin{aligned}
& \alpha \frown(m \otimes n)= \\
& (1 \otimes \mu)(1 \otimes \alpha \otimes 1)(D \otimes 1)(m \otimes n)
\end{aligned}
$$

Let $t: C \longrightarrow A$ be a morphism of degree -1 . The twisted tensor $M \otimes_{t} N$ is defined as $M \otimes N$ with endowed with the following map of degree -1 :

$$
\partial_{t}(m \otimes n)=\partial(m \otimes n)+t \frown(m \otimes n)
$$

Of course ∂_{t} has no reason to be a differential in general, but it is if and only if t satisfies the Cartan-Maurer relation [LV12]

$$
\partial(t)+t \smile t=0,
$$

and in this case, we call t a twisting morphism (or twisting cochain, Brown cochain [Pro11]). Recall that the differential $\partial(t)$ of t in $\operatorname{hom}(C, A)$ is given by $\partial \circ t+t \circ \partial$ since again, $|t|=-1$.

4. BAR AND COBAR

Let R be a ring and C a chain complex in ${ }_{R} \mathcal{M}$ od. Write $\mathbf{\Delta}^{n} C$ for the shifted complex where $\mathbf{\Delta}^{n} C_{i}=C_{i-n}$. The litterature writes $C(-n)\left[\right.$ Wu16], $s^{n} C[\mathrm{LV} 12], \uparrow^{n} C$ Pro11], $C[n]$. The $\mathbf{\Lambda}^{n}$ notation is prefered with n is positive; if it is negative, we let $\mathbf{\nabla}^{n}=\mathbf{\Lambda}^{-n}$.

Let A be a dg-algebra over \mathbb{k}, and \mathcal{B}_{A} be the category of twisting morphisms over A, i.e. the category of tuples (C, τ), where $\tau: C \longrightarrow A$ is a twisting morphisms, and where morphisms are adequatly commuting dg-coalgebra morphisms. Then \mathcal{B}_{A} has a terminal object $\beta: \mathrm{B}(A) \longrightarrow A$, the bar construction of A which we now define. As a graded algebra, we let

$$
\mathrm{B}(A)=T(\bar{A})
$$

with the deconcatenation product, where $\bar{A}=A / \mathbb{k}$. It is customary to denote a homogeneous element $\boldsymbol{\Delta} a_{1} \otimes \cdots \otimes \boldsymbol{\Delta} a_{k}$ of $\mathrm{B}(A)$ as $\left[a_{1}|\cdots| a_{k}\right]$. The twisting morphism β is the composite

$$
\mathrm{B}(A)=T(\boldsymbol{\Delta} \bar{A}) \xrightarrow{\mathrm{proj}} \boldsymbol{\Delta} \bar{A} \xrightarrow{\nabla} \bar{A} \longrightarrow A,
$$

explicitly

$$
\beta(1)=0, \quad \beta[a]=a, \quad \beta\left[a_{1}|\cdots| a_{k}\right]=0 \text { for } k>1
$$

The differential on $\mathrm{B}(A)$ is then specifically crafted for β to indeed be a twisting morphism:

$$
\begin{aligned}
\partial_{k} & =\sum_{i=1}^{k-1} \mathrm{id}^{\otimes i-1} \otimes \mu \otimes \mathrm{id}^{\otimes k-i-1} \\
& +\sum_{i=1}^{k} \mathrm{id}^{\otimes i-1} \otimes \partial \otimes \mathrm{id}^{\otimes k-i}
\end{aligned}
$$

where μ is the multiplication of A. Explicitly:

$$
\begin{aligned}
\partial\left[a_{1}|\cdots| a_{k}\right] & =\sum_{i=1}^{k-1}(-1)^{i+\left|a_{1}\right|+\cdots+\left|a_{i}\right|}\left[a_{1}|\cdots| \mu\left(a_{i}, a_{i+1}\right)|\cdots| a_{k}\right] \\
& +\sum_{i=1}^{k}(-1)^{i-1+\left|a_{1}\right|+\cdots+\left|a_{i-1}\right|}\left[a_{1}|\cdots| \partial\left(a_{i}\right)|\cdots| a_{k}\right] .
\end{aligned}
$$

Recall that elements in brackets are implicitely shifted.
Dually, for C a dg-coalgebra, let \mathcal{C}_{C} be the category of twisting morphisms under C, i.e. tuples (A, τ) where $\tau: C \longrightarrow A$ is a twisting morphisms, and where morphisms are adequatly commuting dg-algebra morphisms. Then \mathcal{C}_{C} has an initial object $\omega: C \longrightarrow \Omega(C)$, the cobar construction of C, wich we now define. As a graded algebra, we let

$$
\Omega(C)=T(\nabla \bar{C})
$$

with the concatenation product, where $\bar{C}=C / \mathbb{k}$. It is customary to denote a homogeneous element $\mathbf{\nabla} c_{1} \otimes \cdots \otimes \mathbf{\nabla} c_{k}$ of $\Omega(C)$ by $\left[c_{1}|\cdots| c_{k}\right]$. The twisting morphism ω is the composite

$$
C \longrightarrow \bar{C} \xrightarrow{\nabla} \bar{C} \longrightarrow T(\nabla \bar{C})=\Omega(C)
$$

explicitly, $\omega(c)=[c]$. The differential on $\Omega(C)$ is then specifically crafted for ω to indeed be a twisting morphism:

$$
\begin{aligned}
\partial_{k} & =\sum_{i=1}^{k-1} \mathrm{id}^{\otimes i-1} \otimes D \otimes \mathrm{id}^{\otimes k-i-1} \\
& +\sum_{i=1}^{k} \mathrm{id}^{\otimes i-1} \otimes \partial \otimes \mathrm{id}^{\otimes k-i}
\end{aligned}
$$

where D is the comultiplication of C.
Theorem 4.1. (1) The twisted complexes $\mathrm{B}(A) \otimes_{\beta} A$ and $C \otimes_{\omega} \Omega(C)$ are acyclic (see next remark).
(2) We have an adjunction

$$
d g \mathcal{A l g}(\Omega(C), A) \cong \operatorname{Tw}(C, A) \cong d g \operatorname{coA} \mathcal{A l g}(C, \mathrm{~B}(A))
$$

and the unit and counit are natural quasiisomorphisms.
(3) For G a simplicial group, there is a quasi-isomorphism $\mathbb{Z} \mathfrak{W}(G) \longrightarrow \mathrm{B} Z G$. For X a simply connected reduced simplicial set, there is a quasi-isomorphism $\Omega \mathbb{Z} X \longrightarrow \mathbb{Z} \mathfrak{G}(X)$.

Recall that by convention, acyclicity of $\mathrm{B}(A) \otimes_{\beta} A$ means that the homology is trivial in every dimension, except in dimension 0 where it is \mathbb{k}. Consequently the bar construction gives a free resolution of the trivial A-module \mathbb{k}. In practice however, it is too big to be computationally tractable...

5. Where it all come together

5.1. The Eilenberg-Zilber theorem. For X a simplicial set, let $\mathbb{Z} X$ be its Moore complex with integer coefficients.

Theorem 5.1 (Eilenberg-Zilber). Let X and Y be simplicial sets. There is a homotopy equivalence

$$
\mathbb{Z}[X \times Y] \longrightarrow \mathbb{Z} X \otimes \mathbb{Z} Y
$$

called the Alexander-Whitney map.
This result gives rise to a few construction. First, consider the following

$$
\mathbb{Z} X \xrightarrow{\mathbb{Z}[\Delta]} \mathbb{Z}[X \times X] \longrightarrow \mathbb{Z} X \otimes \mathbb{Z} X
$$

This gives a structure of dg-coalgebra on $\mathbb{Z} X$. Let $G \circlearrowleft X$ be an action of a simplicial group G on X. Then we can lift this action into the Pontryagin product

$$
\mathbb{Z} G \otimes \mathbb{Z} X \longrightarrow \mathbb{Z}[G \times X] \longrightarrow \mathbb{Z} X
$$

For $X=G$, this construction gives a dg-algebra structure on $\mathbb{Z} G$ (compatible with the coalgebra structure above, producing in fact a Hopf algebra?), and in general, a left $\mathbb{Z} G$-dgmodule structure on $\mathbb{Z} X$.

Let $G \longrightarrow E \xrightarrow{p} B$ be a principal bundle, σ a pseudo section of p, and $\tau: B \longrightarrow G$ the associated twisting map. Thus, $E \cong B \times_{\tau} G$. Further, there is a universal morphism

that induces a twisting map t defined as the composite

$$
\mathbb{Z} B \xrightarrow{f} \mathbb{Z} \mathfrak{G}(B) \xrightarrow{\mathbb{Z} u} \mathbb{Z} G,
$$

where the twisting map f is constructed using acyclic models.

Theorem 5.2 (Twisted Eilenberg-Zilber, due to Brown). There is a natural homotopy equivalence

$$
\mathbb{Z}\left[B \times_{\tau} G\right] \longrightarrow \mathbb{Z} B \otimes_{t} \mathbb{Z} G
$$

6. Koszul algebras

Let R be a ring. For $M \in{ }_{R} \mathcal{M}$ od, recall that $\operatorname{Ext}{ }^{\bullet}(-, M)$ is the left derived functor of $\operatorname{hom}(-, M)$. Specifically, for $N \in$ ${ }_{R} \mathcal{M}$ od, choose a projective resolution $P^{(\bullet)} \rightarrow N \rightarrow 0$, and define $\operatorname{Ext}^{\bullet}(N, M)$ as the cohomology $H^{\bullet}\left(\operatorname{hom}\left(P^{\bullet \bullet}, M\right)\right)$.

Let now R be a \mathbb{k}-algebra. Koszul duality takes interest in providing a simple resolution of \mathbb{k} seen as a trivial R-module.

Lemma 6.1. Let $M=\bigoplus_{i} M_{i}$ be a graded R-module living only in degree $\geq n$ (i.e. $M_{<n}=0$), for a fixed n. Then M admit a free resolution $P^{(\bullet)} \rightarrow M \rightarrow 0$ such that $P^{(i)}$ only lives in degree $\geq n+i$.
Lemma 6.2. Let $0 \rightarrow K \rightarrow P^{(n-1)} \rightarrow \cdots \rightarrow P^{(0)} \rightarrow \mathbb{k} \rightarrow 0$ be an exact sequence, where $P^{(i)}$ is projective, and where K only lives in degree $\geq l$ for some $l>0$ (take for instance a partial projective resolution as in the previous lemma). Then $\operatorname{Ext}^{n}(\mathbb{k}, N) \cong \operatorname{hom}(K, N)$ for any N.

The algebra R is said Koszul if it is reduced ($R_{0}=\mathbb{k}$), and if either of the following equivalent conditions hold:
(1) the trivial R-module \mathbb{k} has a projective resolution $P^{(\bullet)} \rightarrow \mathbb{k} \rightarrow 0$ such that $P^{(i)}$ is generated in degree i (i.e. $P^{(i)}=R P_{i}^{(i)}$);
(2) we have $\operatorname{Ext}^{i}\left(\mathbb{k}, \boldsymbol{\Delta}^{j} \mathbb{k}\right)=0$ if $i \neq j$.

Proposition 6.3. If A is Koszul, then it is quadratic (see next section). Indeed, Ext ${ }^{\bullet}\left(\mathbb{k}, \mathbf{\Lambda}^{2} \mathbb{k}\right)$ has to be concentrated in dimension 2, and some resolution shenanigans show that A is quadratic [Wu16, Proposition 4.2.11]

7. Koszul duality

Let V be a graded \mathbb{k}-vector space. The tensor algebra on V is defined as

$$
T(V)=\bigoplus_{i \in \mathbb{N}} V^{\otimes i}
$$

with the concatenation product. Although homogeneous elements of $T(V)$ are of the form $v=v_{1} \otimes \cdots \otimes v_{k}$, we omit the \otimes by writing $v=v_{1} \cdots v_{k}$. Note a homogeneous elements $v=v_{1} v_{2} \cdots v_{n}$ of $T(V)$ have both a degree $|v|=\sum_{i}\left|v_{i}\right|$ and a weight $w(v)=n$.

Let Q be a graded subspace of $V^{\otimes 2}$. The quadratic algebra $A(V, Q)$ of the quadratic data [LV12] (V, Q) is defined as

$$
A(V, Q)=T(V) /\langle Q\rangle
$$

where specifically, $\langle Q\rangle_{0}=\langle Q\rangle_{1}=0$, and $\langle Q\rangle_{i}=\sum_{j=0}^{i-2} V^{\otimes j} \otimes$ $Q \otimes V^{\otimes i-j-2}$. The multiplication is the usual concatenation operation on the tensor algebra $T(V)$ [LV12], and the algebra is endowed with trivial differential. The quadratic coalgebra of (V, Q) is

$$
C(V, Q)=\mathbb{k} \oplus V \oplus Q \oplus \bigoplus_{i>2} \bigcap_{j=0}^{i-2} V^{\otimes j} \otimes Q \otimes V^{\otimes i-j-2}
$$

The comultiplication is the usual deconcatenation operation on $T^{c}(V)$, and the coalgebra is endowed with trivial differential.

The Koszul dual algebra of the quadratic algebra $A=$ $A(V, Q)$ is defined as

$$
A^{!}=A\left(V^{*}, Q^{\perp}\right)
$$

endowed with trivial differential, where $Q_{i}^{\perp}=$ $\left\{\alpha \in\left(V^{*}\right)^{\otimes i} \mid \alpha(q)=0, \forall q \in\langle Q\rangle_{i}\right\}$. The Koszul dual coalgebra is defined as

$$
A^{\mathrm{i}}=C\left(\boldsymbol{\Delta} V, \mathbf{\Delta}^{2} Q\right)
$$

endowed with trivial differential. Note that there is a twisting map $\kappa: A^{i} \longrightarrow A$ defined as the composite

$$
A^{\mathrm{i}}=C\left(\mathbf{\Delta} V, \mathbf{\Delta}^{2} Q\right) \longrightarrow \mathbf{\Delta} V \xrightarrow{\mathbf{\nabla}} V \longrightarrow A(V, R)=A
$$

which gives rise to the twisted complexes $A^{i} \otimes_{\kappa} A$ and $A \otimes_{\kappa} A^{i}$, called left and right Koszul complex respectively. Explicietly, the differential on $A^{i} \otimes_{\kappa} A$ is

$$
\partial_{\kappa}\left(q_{1} \cdots q_{k-1} q_{k} \otimes a\right)=q_{1} \cdots q_{k-1} \otimes q_{k} a
$$

and similarily for $A \otimes_{\kappa} A^{i}$.
Theorem 7.1. Let A be a quadratic algebra. The following are equivalent:
(1) the algebra A is Koszul;
(2) the dual algebra $A^{!}$is Koszul;
(3) the left complex $A^{i} \otimes_{\kappa} A$ is acyclic (see next remark);
(4) the right complex $A \otimes_{\kappa} A^{i}$ is acyclic (see next remark).

Since this complex $A \otimes_{\kappa} A^{i}$ is augmented, "acyclic" means by convention that the homology is 0 in every dimension except 0 where it is \mathbb{k}. Observe that the weight n component of $A^{\mathrm{i}} \otimes_{\kappa} A$ reads
$0 \rightarrow A^{i(n)} \rightarrow A^{i^{(n-1)}} \otimes A^{(1)} \rightarrow \cdots \rightarrow A^{i^{(1)}} \otimes A^{(n-1)} \rightarrow A^{(n)} \rightarrow 0$
thus summing them all up and appending \mathbb{k} give an augmented complex

$$
\cdots \rightarrow A^{i(n)} \otimes A \rightarrow \cdots \rightarrow A^{i^{(1)}} \otimes A \rightarrow A \xrightarrow{\varepsilon} \mathbb{k} \rightarrow 0
$$

which, if A is Koszul, is a resolution of \mathbb{k} by free A-modules. We can proceed similarily with $A \otimes_{\kappa} A^{i}$. Note that in the left Koszul complex, the n-th term $A^{i^{(n)}} \otimes A$ is generated in weight (n), and this provide a resolution of \mathbb{k} as in the definition of a Koszul algebra above. Thus a method for proving
koszulity is to show that the left (or right) Koszul complex is exact.

8. Examples

Example 8.1. Let V be finite dimensional. The dual of the tensor algebra $T(V)$ is $T(V)^{!}=\mathbb{k} \oplus V^{*}$ with trivial multiplication, called the algebra of dual numbers. Indeed, $T(V)=T(V) /\langle Q\rangle$ for $Q=\{0\}$, thus $Q^{\perp}=\bigoplus_{i \geq 2}\left(V^{*}\right)^{\otimes i}$. Moreover, the dual coalgebra is $T(V)^{\mathbf{i}}=\mathbb{k} \oplus V$, whence the augmented right Koszul complex is

$$
0 \rightarrow T(V) \otimes V \xrightarrow{\partial_{0}} T(V) \xrightarrow{\varepsilon} \mathbb{k} \rightarrow 0
$$

where $\partial\left(\overrightarrow{v_{i}} \otimes w\right)=\overrightarrow{v_{i}} w$, and ε is the augmentation. One readily checks that the complex is acyclic (meaning exact in this context), whence $T(V)$ and $T(V)^{!}$are Koszul.

Example 8.2. Let V be finite dimensional. The symmetric algebra over V is given by $S(V)=T(V) /\langle Q\rangle$ where $Q=\{v w-w v \mid v, w \in V\}$. The dual of $S(V)$ is the exterior algebra $\bigwedge(V)=T(V) /\langle R\rangle$ where $R=\{v v \mid v \in V\}$. In [Wu16, Proposition 4.1.8], it is proved that both are Koszul.

See [LV12, Wu16] for more examples.

References

[Hat02] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
[LV12] Jean-Louis Loday and Bruno Vallette. Algebraic operads, volume 346. Springer Science \& Business Media, 2012.
[May92] J. Peter May. Simplicial objects in algebraic topology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1992. Reprint of the 1967 original.
[Pro11] Alain Prouté. A_{∞}-structures. Modèles minimaux de BauesLemaire et Kadeishvili et homologie des fibrations. Reprints in Theory and Applications of Categories, (21):1-99, 2011. Reprint of the 1986 original, With a preface to the reprint by Jean-Louis Loday.
[Rot09] Joseph J. Rotman. An introduction to homological algebra. Universitext. Springer, New York, second edition, 2009.
[Wu16] Gang Wu. Koszul algebras and koszul duality. Master's thesis, University of Ottawa, August 2016.
[Yek20] Amnon Yekutieli. Derived Categories. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2020.

