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Did you know you could kill someone by dropping [LV12] on its head?

1. Fiber bundles

A fiber bundle [Hat02] (also called locally trivial fiber bun-
dle) F −→ E

p−→ B is a “short exact sequence of spaces”,
more precisely, it is a continuous map p such that every point
b ∈ B has an open neighborhood b ∈ U for which there is a
homeomorphism h : p−1(U) −→ U ×F , called local trivializa-
tion, making the following triangle commute

p−1(U) U × F

U.

h

p proj

The space F is called the fiber, E is the total space, and B
is the base space. Examples include trivial bundles F −→
F × B −→ B, but also the Möbius strip D1 −→ M −→ S1,
the Klein bottle S1 −→ K2 −→ S1, and the Hopf fibrations.
Also, a fiber bundle with discrete fiber is a covering space.

Theorem 1.1. Let F −→ E
p−→ B be a fiber bundle. Then

p∗ : πn(E,F ) −→ πnB is an isomorphism (basepoints are left
implicit). Thus, if B is path-connected, the long relative exact
sequence becomes

· · · → πn+1B → πnF → πnE → πnB → πn−1F → · · · .

2. Simplicial twisting maps

This section quickly surveys [May92], and we only deal
with simplicial sets.

A map p : E −→ B of simplicial sets is called a fiber bun-
dle of fiber F if for every cell b : ∆[n] −→ B, the projection
∆[n]×B E −→ ∆[n] of the following pullback

∆[n]×B E E

∆[n] B

⌟
p

b

is isomorphic to the projection ∆[n]× F . If F is a Kan com-
plex, then p is a Kan fibration. The bundle is said trivial if
E = F ×B and p is just the projection.

Let G be a simplicial group (thus a Kan complex) acting
on the left on E, which we write G ⟲ E. The action is said
effective if ∀g ∈ G, if g acts like the unit 1, then g = 1; it is
said principal if ∀g ∈ G, ∀x ∈ E, if gx = x, then g = 1.

If G ⟲ E principally, then we obtain what we call a prin-
cipal fiber bundle F −→ E

p−→ B = G\E. It seems clear
that it is a fiber bundle, but I could not find that statement
anywhere... A cross section (or just section) of p is a map
σ : B −→ E such that pσ = idB . It exists only if the bundle
is trivial. Thus we relax the constraints on σ and allow it to

not preserve the 0-th face operator d0, and call such a map a
pseudo cross section (or just pseudo section).

The following way of relating twisted cartesian products
and twisting map is taken from [Pro11], which is itself based
on [May92]. Note that for such a pseudo cross section σ, and
b ∈ B,

pσd0(b) = d0(b) = d0pσ(b) = pd0σ(b)

and thus σd0(b) and d0σ(b) lie in the same fiber of p. Since
the action of G is principal, there exist a unique τ(b) ∈ G such
that d0σ(b) = σd0(b) · τ(b). The map τ : B −→ G of degree
−1 (meaning τBn ⊆ Gn−1) satisfies the following properties

d0τ(b) = (τd0(b))
−1 · τd1(b),

diτ(b) = τdi+1(b) i ≥ 1,

siτ(b) = τsi+1(b) i ≥ 0,

τs0(b) = 1.

A map of degree −1 satisfying those properties is called a
twisting map. Interestingly, τ is enough to recover the pseudo
section σ. The twisted cartesial product E = B ×τ G is the
usual cartesian product B×G, but where the 0-th face oper-
ator has been replaced by

d0(b, g) = (d0(b), τ(b) · d0(g)) ,

the fibration p : E −→ B maps (b, g) to b, and the pseudo
section σ maps b to (b, 1). This construction exhibits a bijec-
tion between cross section of principal G-bundles over B and
twisting map B −→ G.

2.1. Simplicial bar and cobar. The W and G construc-
tions presented here are covered in [May92] and briefly dis-
cussed in [Pro11].

Let G be a simplicial group, and consider the category BG

of tuples (X, τ), where X is a simplicial set and τ : X −→ G is
a twisting map. Then BG has a terminal object W(G) −→ G
which may be thought as a “bar construction on G”.

Dually, if X is a reduced (X0 = {∗}) simplicial set, let CX

be the category of tuples (G, τ), where τ : X −→ G is a twist-
ing map. Then CX has an initial object X −→ G(X), which
may be thought as a “cobar construction on X”.

Theorem 2.1. The canonical morphism GW (G) −→ G and
X −→ WG(X) are homotopy equivalences.

3. Homological twisting maps

3.1. Intermezzo in derived algebra. See [Yek20]. A dg-
ring k is a graded algebra (kikj ⊆ ki+j) over a ground ring,
with a differential ∂ satisfying the graded Leibniz rule

∂(ab) = ∂(a)b+ (−1)|a||b|a∂(b) .
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It is said weakly commutative if ab = (−1)|a||b|ba , and
strongly commutative if it is weakly commutative, and if
aa = 0 for all odd a (i.e. |a| odd). If the ground ring is
not of caracteristic 2, the two notions are equivalent. Any
ring can be seen as a dg-ring concentrated in degree 0.

A k-dg-module is a dg-module M =
⊕

i Mi with a graded
action kiMj ⊆ Mi+j satisfying

∂(am) = ∂(a)m+ (−1)|a|a∂(m) .

Let dgAlgk be the category of differential graded k-algebras.
The tensor product of M,N ∈ dgAlgk is given by

(M ⊗N)n =
⊕

i+j=n

Mi ⊗Nj

with differential

∂(m⊗ n) = ∂(m)⊗ n+ (−1)|m|m⊗ ∂(n) .

The inner hom is given by

hom(M,N)n =
⊕
i

Algk(Mi, Ni+n)

with differential

∂(ϕ) = ∂ ◦ ϕ− (−1)|ϕ|ϕ ◦ ∂ .

Note the minus in the middle, and that ϕ is an even cocycle
if and only if ∂ ◦ ϕ = ϕ ◦ ∂, that is, if it is a morphism of
dg-algebras.

The following material can be found in [May92, Pro11],
and in [LV12], although expressed differently. Let C be a
dg-coalgebra with comultiplication D, and A be a dg-algebra
with multiplication µ, both over some ground commutative
ring k. In particular, C and A are dg-modules over k and
so we have a dg-module hom(C,A) defined previously. We
endow it with a structure of dg-algebra with the following
cup product (called convolution product and denoted by ⋆ in
[LV12]):

α ⌣ β = µ(α⊗ β)D α β

If M is a right C-dg-comodule, and N a left A-dg-module,
then the k-tensor M ⊗ N has a structure of left hom(C,A)-
dg-module with the following cap product

α ⌢ (m⊗ n) =

(1⊗ µ)(1⊗ α⊗ 1)(D ⊗ 1)(m⊗ n)
α

Let t : C −→ A be a morphism of degree −1. The twisted
tensor M ⊗t N is defined as M ⊗ N with endowed with the
following map of degree −1:

∂t(m⊗ n) = ∂(m⊗ n) + t ⌢ (m⊗ n) .

Of course ∂t has no reason to be a differential in general,
but it is if and only if t satisfies the Cartan–Maurer relation
[LV12]

∂(t) + t ⌣ t = 0 ,

and in this case, we call t a twisting morphism (or twisting
cochain, Brown cochain [Pro11]). Recall that the differential
∂(t) of t in hom(C,A) is given by ∂ ◦ t + t ◦ ∂ since again,
|t| = −1.

4. Bar and cobar

Let R be a ring and C a chain complex in RMod. Write
▲nC for the shifted complex where ▲nCi = Ci−n. The litter-
ature writes C(−n) [Wu16], snC [LV12], ↑n C [Pro11], C[n].
The ▲n notation is prefered with n is positive; if it is negative,
we let ▼n = ▲−n.

Let A be a dg-algebra over k, and BA be the category of
twisting morphisms over A, i.e. the category of tuples (C, τ),
where τ : C −→ A is a twisting morphisms, and where mor-
phisms are adequatly commuting dg-coalgebra morphisms.
Then BA has a terminal object β : B(A) −→ A, the bar
construction of A which we now define. As a graded algebra,
we let

B(A) = T (▲Ā)

with the deconcatenation product, where Ā = A/k. It is cus-
tomary to denote a homogeneous element ▲a1 ⊗ · · · ⊗▲ak of
B(A) as [a1| · · · |ak]. The twisting morphism β is the compos-
ite

B(A) = T (▲Ā)
proj−−→ ▲Ā ▼−→ Ā −→ A,

explicitly

β(1) = 0, β[a] = a, β[a1| · · · |ak] = 0 for k > 1.

The differential on B(A) is then specifically crafted for β to
indeed be a twisting morphism:

∂k =

k−1∑
i=1

id⊗i−1 ⊗µ⊗ id⊗k−i−1

+

k∑
i=1

id⊗i−1 ⊗∂ ⊗ id⊗k−i

where µ is the multiplication of A. Explicitly:

∂[a1| · · · |ak] =
k−1∑
i=1

(−1)i+|a1|+···+|ai|[a1| · · · |µ(ai, ai+1)| · · · |ak]

+

k∑
i=1

(−1)i−1+|a1|+···+|ai−1|[a1| · · · |∂(ai)| · · · |ak].

Recall that elements in brackets are implicitely shifted.
Dually, for C a dg-coalgebra, let CC be the category

of twisting morphisms under C, i.e. tuples (A, τ) where
τ : C −→ A is a twisting morphisms, and where morphisms
are adequatly commuting dg-algebra morphisms. Then CC

has an initial object ω : C −→ Ω(C), the cobar construction
of C, wich we now define. As a graded algebra, we let

Ω(C) = T (▼C̄)

with the concatenation product, where C̄ = C/k. It is cus-
tomary to denote a homogeneous element ▼c1 ⊗ · · · ⊗ ▼ck of
Ω(C) by [c1| · · · |ck]. The twisting morphism ω is the compos-
ite

C −→ C̄
▼−→ ▼C̄ −→ T (▼C̄) = Ω(C),
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explicitly, ω(c) = [c]. The differential on Ω(C) is then specif-
ically crafted for ω to indeed be a twisting morphism:

∂k =

k−1∑
i=1

id⊗i−1 ⊗D ⊗ id⊗k−i−1

+

k∑
i=1

id⊗i−1 ⊗∂ ⊗ id⊗k−i

where D is the comultiplication of C.
Theorem 4.1. (1) The twisted complexes B(A)⊗βA and

C ⊗ω Ω(C) are acyclic (see next remark).
(2) We have an adjunction
dgAlg(Ω(C), A) ∼= Tw(C,A) ∼= dgcoAlg(C,B(A))

and the unit and counit are natural quasi-
isomorphisms.

(3) For G a simplicial group, there is a quasi-isomorphism
ZW(G) −→ BZG. For X a simply connected re-
duced simplicial set, there is a quasi-isomorphism
ΩZX −→ ZG(X).

Recall that by convention, acyclicity of B(A) ⊗β A means
that the homology is trivial in every dimension, except in di-
mension 0 where it is k. Consequently the bar construction
gives a free resolution of the trivial A-module k. In practice
however, it is too big to be computationally tractable...

5. Where it all come together

5.1. The Eilenberg–Zilber theorem. For X a simplicial
set, let ZX be its Moore complex with integer coefficients.
Theorem 5.1 (Eilenberg–Zilber). Let X and Y be simplicial
sets. There is a homotopy equivalence

Z[X × Y ] −→ ZX ⊗ ZY.
called the Alexander–Whitney map.

This result gives rise to a few construction. First, consider
the following

ZX Z[∆]−−−→ Z[X ×X] −→ ZX ⊗ ZX.

This gives a structure of dg-coalgebra on ZX. Let G ⟲ X be
an action of a simplicial group G on X. Then we can lift this
action into the Pontryagin product

ZG⊗ ZX −→ Z[G×X] −→ ZX.

For X = G, this construction gives a dg-algebra structure on
ZG (compatible with the coalgebra structure above, produc-
ing in fact a Hopf algebra?), and in general, a left ZG-dg-
module structure on ZX.

Let G −→ E
p−→ B be a principal bundle, σ a pseudo

section of p, and τ : B −→ G the associated twisting map.
Thus, E ∼= B ×τ G. Further, there is a universal morphism

B

G(B) G

τ

u

that induces a twisting map t defined as the composite

ZB f−→ ZG(B)
Zu−−→ ZG,

where the twisting map f is constructed using acyclic models.

Theorem 5.2 (Twisted Eilenberg–Zilber, due to Brown).
There is a natural homotopy equivalence

Z [B ×τ G] −→ ZB ⊗t ZG.

6. Koszul algebras

Let R be a ring. For M ∈ RMod, recall that Ext•(−,M) is
the left derived functor of hom(−,M). Specifically, for N ∈
RMod, choose a projective resolution P (•) → N → 0, and
define Ext•(N,M) as the cohomology H•(hom(P (•),M)).

Let now R be a k-algebra. Koszul duality takes interest in
providing a simple resolution of k seen as a trivial R-module.
Lemma 6.1. Let M =

⊕
i Mi be a graded R-module living

only in degree ≥ n (i.e. M<n = 0), for a fixed n. Then M
admit a free resolution P (•) → M → 0 such that P (i) only
lives in degree ≥ n+ i.
Lemma 6.2. Let 0 → K → P (n−1) → · · · → P (0) → k → 0
be an exact sequence, where P (i) is projective, and where K
only lives in degree ≥ l for some l > 0 (take for instance a
partial projective resolution as in the previous lemma). Then
Extn(k, N) ∼= hom(K,N) for any N .

The algebra R is said Koszul if it is reduced (R0 = k), and
if either of the following equivalent conditions hold:

(1) the trivial R-module k has a projective resolution
P (•) → k → 0 such that P (i) is generated in degree i

(i.e. P (i) = RP
(i)
i );

(2) we have Exti(k,▲jk) = 0 if i ̸= j.
Proposition 6.3. If A is Koszul, then it is quadratic (see
next section). Indeed, Ext•(k,▲2k) has to be concentrated in
dimension 2, and some resolution shenanigans show that A is
quadratic [Wu16, Proposition 4.2.11]

7. Koszul duality

Let V be a graded k-vector space. The tensor algebra on
V is defined as

T (V ) =
⊕
i∈N

V ⊗i

with the concatenation product. Although homogeneous el-
ements of T (V ) are of the form v = v1 ⊗ · · · ⊗ vk, we omit
the ⊗ by writing v = v1 · · · vk. Note a homogeneous elements
v = v1v2 · · · vn of T (V ) have both a degree |v| =

∑
i |vi| and

a weight w(v) = n.
Let Q be a graded subspace of V ⊗2. The quadratic algebra

A(V,Q) of the quadratic data [LV12] (V,Q) is defined as

A(V,Q) = T (V )/ ⟨Q⟩ ,

where specifically, ⟨Q⟩0 = ⟨Q⟩1 = 0, and ⟨Q⟩i =
∑i−2

j=0 V
⊗j ⊗

Q ⊗ V ⊗i−j−2. The multiplication is the usual concatenation
operation on the tensor algebra T (V ) [LV12], and the algebra
is endowed with trivial differential. The quadratic coalgebra
of (V,Q) is

C(V,Q) = k⊕ V ⊕Q⊕
⊕
i>2

i−2∩
j=0

V ⊗j ⊗Q⊗ V ⊗i−j−2 .

The comultiplication is the usual deconcatenation operation
on T c(V ), and the coalgebra is endowed with trivial differen-
tial.
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The Koszul dual algebra of the quadratic algebra A =
A(V,Q) is defined as

A! = A(V ∗, Q⊥) ,

endowed with trivial differential, where Q⊥
i ={

α ∈ (V ∗)⊗i | α(q) = 0,∀q ∈ ⟨Q⟩i
}

. The Koszul dual coal-
gebra is defined as

A

!

= C(▲V,▲2Q)

endowed with trivial differential. Note that there is a twisting
map κ : A

!

−→ A defined as the composite

A

!

= C(▲V,▲2Q) −→ ▲V ▼−→ V −→ A(V,R) = A,

which gives rise to the twisted complexes A

!

⊗κA and A⊗κA

!

,
called left and right Koszul complex respectively. Explicietly,
the differential on A

!

⊗κ A is
∂κ (q1 · · · qk−1qk ⊗ a) = q1 · · · qk−1 ⊗ qka ,

and similarily for A⊗κ A

!

.
Theorem 7.1. Let A be a quadratic algebra. The following
are equivalent:

(1) the algebra A is Koszul;
(2) the dual algebra A! is Koszul;
(3) the left complex A

!

⊗κ A is acyclic (see next remark);
(4) the right complex A⊗κA

!

is acyclic (see next remark).
Since this complex A⊗κ A

!

is augmented, “acyclic” means
by convention that the homology is 0 in every dimension ex-
cept 0 where it is k. Observe that the weight n component of
A

!
⊗κ A reads

0 → A

!(n) → A

!(n−1)⊗A(1) → · · · → A

!(1)⊗A(n−1) → A(n) → 0

thus summing them all up and appending k give an aug-
mented complex

· · · → A

!(n) ⊗A → · · · → A

!(1) ⊗A → A
ε−→ k → 0

which, if A is Koszul, is a resolution of k by free A-modules.
We can proceed similarily with A ⊗κ A

!

. Note that in the
left Koszul complex, the n-th term A

!(n) ⊗ A is generated in
weight (n), and this provide a resolution of k as in the defi-
nition of a Koszul algebra above. Thus a method for proving

koszulity is to show that the left (or right) Koszul complex is
exact.

8. Examples

Example 8.1. Let V be finite dimensional. The dual of
the tensor algebra T (V ) is T (V )! = k ⊕ V ∗ with trivial
multiplication, called the algebra of dual numbers. Indeed,
T (V ) = T (V )/ ⟨Q⟩ for Q = {0}, thus Q⊥ =

⊕
i≥2(V

∗)⊗i.
Moreover, the dual coalgebra is T (V )

!

= k ⊕ V , whence the
augmented right Koszul complex is

0 → T (V )⊗ V
∂0−→ T (V )

ε−→ k → 0,

where ∂(−→vi ⊗ w) = −→viw, and ε is the augmentation. One
readily checks that the complex is acyclic (meaning exact in
this context), whence T (V ) and T (V )! are Koszul.

Example 8.2. Let V be finite dimensional. The symmet-
ric algebra over V is given by S(V ) = T (V )/ ⟨Q⟩ where
Q = {vw − wv | v, w ∈ V }. The dual of S(V ) is the exte-
rior algebra

∧
(V ) = T (V )/ ⟨R⟩ where R = {vv | v ∈ V }. In

[Wu16, Proposition 4.1.8], it is proved that both are Koszul.

See [LV12, Wu16] for more examples.
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