STABILITY OF LAWVERE THEORIES

CÉDRIC HO THANH

Abstract. TODO: Write the abstract.

Contents

1. Introduction 1
1.1. Prerequisites 1
2. Lawvere theories 2
2.1. Definition 2
2.2. Models 2
2.3. Products of models 3
3. Tensor product 5
3.1. Commutativity 5
3.2. Tensor product 5
3.3. Derived theories 7
3.4. Matrix calculus 10
3.5. Center 11
4. Morita theory 12
5. Stability 13
6. Conclusion 14
References 14

1. Introduction

TODO: Write the introduction
1.1. Prerequisites. Let \mathcal{C} be a category with products. Let I be some index set, and $d_{i} \in \mathcal{C}$, for $i \in I$. The projection onto the i-th component is denoted by $\pi_{i}: \prod_{j} d_{j} \longrightarrow d_{i}$. If all the d_{i} 's are equal to some $d \in \mathcal{C}$, we write $d^{I}:=\prod_{i \in I} d_{i}$. By universal property, a collection of morphisms $g_{i}: c \longrightarrow d_{i}$ induces a morphism

$$
\begin{equation*}
\left\langle g_{i}\right\rangle_{i \in I}: c \longrightarrow \prod_{i \in I} d_{i} . \tag{1.1}
\end{equation*}
$$

If all the g_{i} 's are identities, then $\Delta_{I}:=\left\langle\operatorname{id}_{c}\right\rangle_{i \in I}: c \longrightarrow c^{I}$ is called a diagonal of c. We abbreviate Δ_{I} as simply Δ if no ambiguity arise. If $f: b \longrightarrow c$ and $h_{i}: d_{i} \longrightarrow e_{i}$, then

$$
\begin{equation*}
\left\langle h_{i} g_{i} f\right\rangle_{i}=\left(\prod_{i} h_{i}\right)\left\langle g_{i}\right\rangle_{i} f \tag{1.2}
\end{equation*}
$$

[^0]In particular, $\left\langle g_{i}\right\rangle_{i}=\left(\prod_{i} g_{i}\right) \Delta$. A bijection $\sigma: I \longrightarrow I$ induces an automorphism

$$
\begin{equation*}
\sigma:=\left\langle\pi_{\sigma(i)}\right\rangle_{i \in I}: d^{I} \longrightarrow d^{I} \tag{1.3}
\end{equation*}
$$

We denote by S_{n} the n-th symmetric group, which is the group of automorphisms of an n-element set.

2. LAWVERE THEORIES

2.1. Definition. For $n \in \mathbb{N}$, let $[n]$ be the n-elements set $\{1,2, \ldots, n\}$. If no ambiguity arises, we shall simply denote it by $n=[n]$. Let \aleph_{0} be the full subcategory of Set spanned by sets of the form n. It is a skeleton of Set_{f}, the category of finite sets.

Clearly, \aleph_{0} has finite coproducts, given by addition of numbers. Therefore, $\aleph_{0}^{\text {op }}$ has finite products, also given by addition of numbers. In particular, all objects of \aleph_{0}^{op} are iterated products of the object 1.

A Lawvere theory (also called one-storted algebraic theory [ARV11, definition $11.3]$) is a category L with finite products, equipped with a functor $l: \kappa_{0}^{\mathrm{op}} \longrightarrow \mathrm{L}$ that is an identity on objects and preserves finite products. In other words, L is a category with finite products, where all objects are iterated products of a distinguished object 1. Therefore, the functor l shall remain implicit. A morphism $F: \mathrm{L} \longrightarrow \mathrm{K}$ between Lawvere theories is simply a functor below \aleph_{0}^{op}. Let \mathcal{L} aw be the category of Lawvere theories and such morphisms. It has an initial object, namely \aleph_{0}^{op} itself.
2.2. Models. Let \mathcal{C} be a category with finite products. A model of L in \mathcal{C} is a finite product preserving functor $X: \mathrm{L} \longrightarrow \mathcal{C}$. If no ambiguity arise, we write X^{n} instead of $X n, X$ instead of $X^{1}=X 1$, and if $f \in \mathcal{L}(m, n)$, we write $f: X^{m} \longrightarrow X^{n}$ instead of $X f$. With these notations, a model X is the datum of an object $X \in \mathcal{C}$ together with a morphism $f: X^{n} \longrightarrow X$ for every morphism $f \in \mathrm{~L}(n, 1)$, satisfying the same relations as L . A morphism of models $\alpha: X \longrightarrow Y$ is simply a natural transformation. Let $\mathrm{L}(\mathcal{C})$ be the category of models of L in \mathcal{C} and $U_{\mathrm{L}}: \mathrm{L}(\mathcal{C}) \longrightarrow \mathcal{C}$ be the forgetful functor. It maps a model X to $X=X^{1}$, and $\alpha: X \longrightarrow Y$ to $\alpha=\alpha_{1}$.

Lemma 2.1. If $\alpha: X \longrightarrow Y$ is a morphism of models, then $\alpha_{n}: X^{n} \longrightarrow Y^{n}$ is simply $\left(\alpha_{1}\right)^{n}$.

Proof. Consider the projection $\pi_{i}: n \longrightarrow 1$ in L. Since α is a natural transformation, the following square commutes:

Since this holds for all $1 \leq i \leq n$, we conclude that $\alpha_{n}=\left(\alpha_{1}\right)^{n}$.
Lemma 2.3. Let $X, Y \in \mathrm{~L}(\mathcal{C})$ and $\beta: X \longrightarrow Y$ be a morphism in \mathcal{C}. Then β extends as a morphism of models $X \longrightarrow Y$ if and only if for all $n \in \mathbb{N}$ and $f \in \mathrm{~L}(n, 1)$, the
following square commutes

Proof. Necessity is clear. We now prove that the condition is sufficient. Note that a morphism $g: n \longrightarrow m$ in L can be decomposed as $g=\left\langle\pi_{i} g\right\rangle_{1 \leq i \leq m}$, and that each $\pi_{i} g$ is a morphism $n \longrightarrow 1$. By assumption, $\pi_{i} g \beta^{n}=\beta \pi_{i} g$, thus

$$
\begin{equation*}
g \beta^{n}=\left\langle\pi_{i} g \beta^{n}\right\rangle_{1 \leq i \leq m}=\left\langle\beta \pi_{i} g\right\rangle_{1 \leq i \leq m}=\beta g \tag{2.5}
\end{equation*}
$$

Thanks to lemmas 2.1 and 2.3 , we can write the n-th component of $\alpha: X \longrightarrow Y$ simply as $\alpha^{n}: X^{n} \longrightarrow Y^{n}$. Consider the case $\mathcal{C}=$ Set, and let $n \in \mathbb{N}$. The n-th representable model of L [ARV11, remark 1.12] is $L_{n}:=\mathrm{L}(n,-): \mathrm{L} \longrightarrow$ Set.
Lemma 2.6 (Yoneda lemma). For $X \in \mathrm{~L}(\mathrm{Set})$ there is an natural isomorphism (of sets)

$$
\begin{equation*}
X^{n} \cong \mathrm{~L}(\operatorname{Set})\left(L_{n}, X\right) \tag{2.7}
\end{equation*}
$$

More precisely, it maps an element $x \in X^{n}$ to the unique morphism $\tilde{x}: L_{n} \longrightarrow X$ such that $\tilde{x}^{n}\left(\mathrm{id}_{n}\right)=x$.
2.3. Products of models. By [AR94, theorem 1.46 and corollary 1.52], $\mathrm{L}($ Set $)$ is a finitely locally presentable category, and in particular, it has all limits and colimits. The same result cannot be expected to hold for a general ground category \mathcal{C} with finite products, but as we will see in lemma $2.11, \mathrm{~L}(\mathcal{C})$ still has finite products.

For integers $m, n>0$, let $\tau_{n ; m} \in S_{m n}$ be the shuffle permutation, i.e. the permutation such that for all $1 \leq i \leq m$ and $1 \leq j \leq n$, we have

$$
\begin{equation*}
\tau_{n ; m}((j-1) n+i)=(i-1) m+j \tag{2.8}
\end{equation*}
$$

In other words, $\tau_{n ; m}$ "rearranges m tuples of n elements into n tuples of m elements". If n or m is 0 , then by convention, let $\tau_{n ; m}$ be the identity on the empty set. We consider $\tau_{n ; m}$ as a morphism $m n \longrightarrow m n$ of \aleph_{0}^{op}, and therefore as a morphism in any Lawvere theory.

If $c_{1}, \ldots, c_{n} \in \mathcal{C}$ and $m \in \mathbb{N}$, then there is an isomorphism

$$
\begin{equation*}
\tau=\tau_{c_{1}, \ldots, c_{n} ; m}:\left(\prod_{i} c_{i}\right)^{m} \longrightarrow \prod_{i} c_{i}^{m} \tag{2.9}
\end{equation*}
$$

induced by $\tau_{n ; m}$, which again, rearranges m tuples of n elements into n tuples of m elements. Explicitly, if $p_{k}:\left(\prod_{i} c_{i}\right)^{m} \longrightarrow c_{l}$ is the projection into the k-th component, where $1 \leq k \leq m n, 1 \leq l \leq n$, and $l \equiv k \bmod n$, then τ is the universal morphism

$$
\begin{equation*}
\tau=\left\langle p_{\tau_{n ; m}(k)}\right\rangle_{1 \leq k \leq m n} \tag{2.10}
\end{equation*}
$$

If all the c_{i} 's are equal to some object c, then we write $\tau_{c ; n ; m}$ instead of $\tau_{c, \ldots, c ; m}$.
Lemma 2.11 ([ARV11, proposition 1.21]). The category $\mathrm{L}(\mathrm{C})$ has finite products, given as follows:
(1) if the terminal object of \mathcal{C} is 1 , then the terminal model is the constant functor at 1 ;
(2) if $X, Y \in \mathrm{~L}(\mathbb{C})$, then $X \times Y$ is the functor

$$
\begin{array}{rlr}
X \times Y: \mathrm{L} & \longrightarrow \mathcal{C} \\
n & \longmapsto(X \times Y)^{n} & n \in \mathbb{N} \\
f & \longmapsto \tau_{X, Y ; q}^{-1}(f \times f) \tau_{X, Y ; p} & f \in \mathrm{~L}(p, q) .
\end{array}
$$

In details, $(X \times Y) f$ is the composite

$$
\begin{equation*}
(X \times Y)^{p} \xrightarrow{\tau_{X, Y ; p}} X^{p} \times Y^{p} \xrightarrow{f \times f} X^{q} \times Y^{q} \xrightarrow{\tau_{X, Y ; q}^{-1}}(X \times Y)^{q} . \tag{2.12}
\end{equation*}
$$

Proof. The model described in point (1) is clearly terminal. Consider $X \times Y$ as defined in point (2), and define $\pi_{X, n}$ as the composite

$$
\begin{equation*}
(X \times Y)^{n} \xrightarrow{\tau_{X, Y ; n}} X^{n} \times Y^{n} \xrightarrow{\pi_{X^{n}}} X^{n} \tag{2.13}
\end{equation*}
$$

Take $f \in \mathrm{~L}(p, q)$, and consider

Both inner squares commute by definition, thus so does the outer one. In other words, $\pi_{X, p}$'s jointly define a natural transformation $\pi_{X}: X \times Y \longrightarrow X$. Similarly, we define $\pi_{Y}: X \times Y \longrightarrow Y$. We now check that $X \stackrel{\pi_{X}}{\longleftrightarrow} X \times Y \xrightarrow{\pi_{Y}}$ is a limit cone. For $X \stackrel{\alpha}{\longleftarrow} Z \xrightarrow{\beta} Y$ another cone, let γ_{n} be the following composite

$$
\begin{equation*}
Z^{n} \xrightarrow{\left\langle\alpha_{n}, \beta_{n}\right\rangle} X^{n} \times Y^{n} \xrightarrow{\tau_{X}^{-1}, Y ; n}(X \times Y)^{n} . \tag{2.15}
\end{equation*}
$$

Akin to (2.14), it is easy to check that the γ_{n} 's jointly define a morphism $Z \longrightarrow$ $X \times Y$, and that furthermore, $\alpha=\pi_{X} \gamma$ and $\beta=\pi_{Y} \gamma$. If γ^{\prime} is another such morphism, then necessarily

$$
\begin{equation*}
\tau_{X, Y ; 2} \gamma_{n}^{\prime}=\left\langle\alpha_{n}, \beta_{n}\right\rangle=\tau_{X, Y ; 2} \gamma \tag{2.16}
\end{equation*}
$$

and since $\tau_{X, Y ; 2}$ is an isomorphism, $\gamma_{n}^{\prime}=\gamma_{n}$. Finally, $X \times Y$ defined above is the product of X and Y.
Lemma 2.17. If $X \in \mathrm{~L}(\mathcal{C}), g \in \mathrm{~L}(n, 1)$, and $m \in \mathbb{N}$, then

$$
\begin{equation*}
X^{m} g=(X g)^{m} \tau_{X ; m ; n}=X\left(g^{m} \tau_{m ; n}\right) \tag{2.18}
\end{equation*}
$$

Proof. The second equality follows from the fact that X preserves finite products. For the first one, we proceed by induction. The cases $m=0,1$ hold trivially, and $m=2$ holds by definition of the product in $\mathrm{L}(\mathcal{C})$. Thus, assume that $m \geq 3$. We
have

$$
\begin{array}{rlr}
X^{m} g & =\left(X \times X^{m-1}\right) g & \\
& =\tau_{X, X^{m-1} ; 1}^{-1}\left(X g \times X^{m-1} g\right) \tau_{X, X^{m-1} ; 1} & \\
& =\left(X g \times X^{m-1} g\right) \tau_{X, X} X^{m-1} ; 1 & \tau_{X, X^{m-1} ; 1}=\mathrm{id} \\
& =\left(X g \times(X g)^{m-1} \tau_{X ; m-1 ; n}\right) \tau_{X, X^{m-1} ; 1} & \text { by induction } \\
& =(X g)^{m}\left(\operatorname{id}_{X} \times \tau_{X ; m-1 ; n}\right) \tau_{X, X^{m-1} ; 1} & \\
& =(X g)^{m} \tau_{X ; m ; n} &
\end{array}
$$

3. Tensor product

3.1. Commutativity. Let $K, L \in \mathcal{L} a w$, and \mathcal{C} be a category with finite products. As we saw in lemma 2.11, $\mathrm{L}(\mathcal{C})$ has finite products, and therefore, we may consider the category of K -models in $\mathrm{L}(\mathcal{C})$, i.e. $\mathrm{K}(\mathrm{L}(\mathcal{C}))$. As we will see in this section, the latter can be seen as the category of models in \mathcal{C}.

Let $f \in \mathrm{~L}(n, 1)$ and $g \in \mathrm{~L}(m, 1)$. We say that f commutes with g, denoted by $f \boxtimes g$, if the following equality is satisfied:

$$
\begin{equation*}
f g^{n}=g f^{m} \tau_{m ; n} \tag{3.1}
\end{equation*}
$$

More generally, if $c \in \mathcal{C}, f \in \mathcal{C}\left(c^{n}, 1\right)$ and $g \in \mathcal{C}\left(c^{m}, 1\right)$, then we say that f commutes with g if $f g^{n}=g f^{m} \tau_{c ; m ; n}$, i.e. if the following diagram commutes:

$$
\begin{align*}
& c^{m n} \xrightarrow{g^{n}} c^{n} \xrightarrow{f} c \tag{3.2}\\
& \tau_{c ; m ; n} \downarrow \\
& c^{n m} \xrightarrow{f^{m}} c^{m} \xrightarrow{g} c .
\end{align*}
$$

Note that since $\tau_{m ; n}^{-1}=\tau_{n ; m}$, the commutativity relation \boxtimes is symmetric.
To simplify notations, if $A, B \subseteq \mathrm{~L} / 1$ are sets of morphisms with codomain 1 , then we write $A \boxtimes B$ to signify that every morphism in A commutes with every morphism of B. Let $\left.\mathrm{L}\right|_{A}$ be the smallest subtheory of L containing A. In particular, $\left.\mathrm{L}\right|_{A} / 1$ is the smallest subset of $\mathrm{L} / 1$ such that
(1) $A \subseteq \mathrm{~L}_{A} / 1$;
(2) the projection $\pi_{i}: n \longrightarrow 1$ is in $\mathrm{L}_{A} / 1$, for all $n \in \mathbb{N}$ and $1 \leq i \leq n$;
(3) if $g, f_{1}, \ldots,\left.f_{n} \in \mathrm{~L}\right|_{A} / 1$, then $\left.g \prod_{i} f_{i} \in \mathrm{~L}\right|_{A} / 1$ and $\left.g\left\langle f_{i}\right\rangle \in \mathrm{L}\right|_{A} / 1$.

If $\mathrm{L}=\left.\mathrm{L}\right|_{A}$, then we say that A generates L . Trivially $\mathrm{L} / 1$ generates L .
Lemma 3.3. Let $A, B \subseteq \mathrm{~L} / 1$. If $A \boxtimes B$, then $\left(\mathrm{L}_{A} / 1\right) \boxtimes\left(\left.\mathrm{L}\right|_{B} / 1\right)$.
Proof. By symmetry of \boxtimes, it is enough to show that $A \boxtimes\left(\left.\mathrm{~L}\right|_{B} / 1\right)$. The rest is routine verifications.
3.2. Tensor product. For $L, K \in \mathcal{L} a w$, consider the theory $K 山_{\aleph_{0}^{\text {op }}} L$ given by the categorical pushout

It contains all the morphisms of K and L, but is quotiented in such a way that only one copy of \aleph_{0}^{op} is present. In particular, $\mathrm{K} 山_{\aleph_{0}^{o p}} \mathrm{~L}$ is still a Lawvere theory. Let $\mathrm{K} \otimes \mathrm{L}$, the tensor product (also called Kronecker product) of K and L [Fre66] be the following quotient:

$$
\begin{equation*}
\mathrm{K} \otimes \mathrm{~L}:=\frac{\mathrm{K} 山_{\aleph_{0}^{\mathrm{op}}} \mathrm{~L}}{f g^{n} \sim g f^{m} \tau_{m ; n}, f \in \mathrm{~K}(n, 1), g \in \mathrm{~L}(m, 1)} \tag{3.5}
\end{equation*}
$$

Denote by $i_{\mathrm{K}}: \mathrm{K} \longrightarrow \mathrm{K} \otimes \mathrm{L}$ the natural map (which is not necessarily faithful!), and likewise for L. Since $\tau_{m ; n}^{-1}=\tau_{n ; m}$, we have $f g^{n}=g f^{m} \tau_{m ; n}$ if and only if $g f^{m} \sim f g^{n} \tau_{n ; m}$, which implies that the tensor product \otimes is commutative.
Proposition 3.6. The initial theory \aleph_{0}^{op} is a neutral element for the tensor product.
Proof. Take $\mathrm{K} \in \mathcal{L}$ aw. Then $\mathrm{K} \amalg_{\aleph_{0}^{\text {op }}} \aleph_{0}^{\mathrm{op}}=\mathrm{K}$, thus

$$
\begin{aligned}
\mathrm{K} \otimes \mathfrak{\aleph}_{0}^{\mathrm{op}} & =\frac{\mathrm{K}}{f g^{n} \sim g f^{m} \tau_{m ; n}, f \in \mathrm{~K}(n, 1), g \in \mathcal{\aleph}_{0}^{\mathrm{op}}(m, 1)} \\
& =\frac{\mathrm{K}}{f \pi_{i}^{n} \sim \pi_{i} f^{m} \tau_{m ; n}, f \in \mathrm{~K}(n, 1), \pi_{i}: m \longrightarrow 1,1 \leq i \leq m}
\end{aligned}
$$

However, the relation $f \pi_{i}^{n}=\pi_{i} f^{m} \tau_{m ; n}$ is already satisfied in K (and indeed, in any Lawvere theory), thus $\mathrm{K} \otimes \kappa_{0}^{\mathrm{op}}=\kappa_{0}^{\mathrm{op}} \otimes \mathrm{K}=\mathrm{K}$.

Lemma 3.7. Let $X \in \mathrm{~K}(\mathrm{~L}(\mathrm{C}))$.
(1) For $d \in$ hom \aleph_{0}^{op} we have $(X 1) d=(X d)_{1}$.
(2) For $f \in \mathrm{~K} / 1$ and $g \in \mathrm{~L} / 1$ we have $(X 1) g \boxtimes(X f)_{1}$.

Proof.
(1) Since X and $X 1$ are models of Lawvere theories, they preserve finite products.
(2) By naturality of $X f$, the following diagram commutes

$$
\begin{gather*}
\quad(X m) n \xrightarrow{(X f)_{n}}(X 1) n \tag{3.8}\\
(X m) g \downarrow \\
\left.(X m) 1 \xrightarrow{\downarrow} \xrightarrow{\downarrow}(X f)_{1}\right) g \\
(X 1) 1 .
\end{gather*}
$$

By lemma 2.11, $(X m) g=(X 1)^{m} g=((X 1) g)^{m} \tau_{X 1 ; m ; n}$, thus

$$
\begin{equation*}
(X f)_{1}((X 1) g)^{m} \tau_{(X 1) 1 ; m ; n}=(X 1) g(X f)_{n}=((X 1) g)(X f)_{1}^{n} \tag{3.9}
\end{equation*}
$$

which is the desired relation.
Theorem 3.10. There is an equivalence $\mathrm{K}(\mathrm{L}(\mathcal{C})) \simeq \mathrm{K} \otimes \mathrm{L}(\mathcal{C})$.
Proof. Informally, the central observation is that the relations $f g^{n}=g f^{m} \tau_{m ; n}$ ranging over g encodes the fact that f induces a natural transformation between Lmodels in \mathcal{C}, i.e. a morphism in $L(\mathcal{C})$.

Let $X \in \mathrm{~K}(\mathrm{~L}(\mathcal{C}))$. By lemma 3.7, the following functor is a well-defined model of $\mathrm{K} \otimes \mathrm{L}:$

$$
\begin{array}{rlr}
X^{\mathrm{b}}: \mathrm{K} \otimes \mathrm{~L} & \longrightarrow \mathrm{C} & \\
n & \longmapsto(X 1) n & n \in \mathbb{N} \\
f & \longmapsto(X f)_{1} & f \in \operatorname{hom} \mathrm{~K} \\
g & \longmapsto(X 1) g & g \in \operatorname{hom} \mathrm{~L} .
\end{array}
$$

This defines a functor $(-)^{b}: \mathrm{K}(\mathrm{L}(\mathcal{C})) \longrightarrow \mathrm{K} \otimes \mathrm{L}(\mathcal{C})$ mapping a morphism α to $\alpha^{b}:=\alpha_{1}$. Conversely, let $Y \in \mathrm{~K} \otimes \mathrm{~L}(\mathcal{C})$. For $f \in \mathrm{~L}\left(m, m^{\prime}\right)$ and $g \in \mathrm{~L}(n, 1)$, the following square commutes

$$
\begin{align*}
& Y^{m n} \xrightarrow{(Y f)^{n}} Y^{m^{\prime} n} \\
& \underset{Y^{m} g}{\downarrow} \xrightarrow{\downarrow} \xrightarrow{\text { Yf }} \underset{Y^{m^{\prime}}}{\downarrow Y^{m^{\prime}}{ }_{g}} \tag{3.11}
\end{align*}
$$

since in $\mathrm{K} \otimes \mathrm{L}$ we have $\pi_{i} f \otimes g$ for all $1 \leq i \leq m$. Therefore, by lemma 2.3, the $(Y f)^{n}$'s jointly define a morphism $(Y f)^{\bullet}: Y^{m} i_{\mathrm{K}} \longrightarrow Y^{m^{\prime}} i_{\mathrm{K}}$. This enables the following definition

$$
\begin{array}{rl}
Y^{\sharp}: \mathrm{K} & \longrightarrow \mathrm{~L}(\mathcal{C}) \\
n & \longmapsto Y^{n} i_{\mathrm{K}} \\
f & n(Y f)^{\bullet}
\end{array}
$$

from which we derive a functor $(-)^{\sharp}: \mathrm{K} \otimes \mathrm{L}(\mathcal{C}) \longrightarrow \mathrm{K}(\mathrm{L}(\mathcal{C})$) mapping a morphism β to $\left(\beta_{1}\right)^{\bullet}$. Finally, it is routine verification to show that $(-)^{b}$ and $(-)^{\sharp}$ are mutually inverse equivalences of categories.

Corollary 3.12. We have $\mathrm{K}(\mathrm{L}(\mathrm{C})) \simeq \mathrm{L}(\mathrm{K}(\mathrm{C}))$.

3.3. Derived theories.

\qquad binary operation $\lambda=\lambda_{2}: 2 \longrightarrow 1$, and the following relations:

$$
\begin{equation*}
\lambda\left(\mathrm{id}_{1} \times 0\right)=\mathrm{id}_{1}=\lambda\left(0 \times \mathrm{id}_{1}\right), \quad \lambda\left(\lambda \times \mathrm{id}_{1}\right)=\lambda\left(\mathrm{id}_{1} \times \lambda\right), \tag{3.13}
\end{equation*}
$$

standing for unitality and associativity, respectively. Define the n-ary multiplication λ_{n} as follows: $\lambda_{0}:=0, \lambda_{1}:=\mathrm{id}_{1}$, and for $n \geq 2, \lambda_{n+1}:=\lambda\left(\lambda_{n} \times \mathrm{id}_{1}\right)$. Let cMon be the theory of commutative monoids, generated like Mon but with the following additional commutativity axiom:

$$
\begin{equation*}
\lambda=\lambda(12) \tag{3.14}
\end{equation*}
$$

Finally, the theory Ab of abelian groups extends cMon with a morphism $i: 1 \longrightarrow 1$ and the following invertibility axiom

$$
\begin{equation*}
\lambda\left(i \times \mathrm{id}_{1}\right)=0=\lambda\left(\mathrm{id}_{1} \times i\right) \tag{3.15}
\end{equation*}
$$

Proposition 3.16 (Eckmann-Hilton argument). Let K be a Lawvere theory, $n \geq 2$, $f, g: n \longrightarrow 1$, and $0: 0 \longrightarrow 1$. Assume that 0 is a neutral element for f and g, i.e. $f\left(0^{i-1} \times \mathrm{id}_{1} \times 0^{n-i}\right)=\mathrm{id}_{1}$, for all $1 \leq i \leq n$, and likewise for g. If $f \boxtimes g$, then $f=g$ and for all $\sigma \in S_{n}, f=f \sigma$.

Proof. Take $\sigma \in S_{n}$, and define

$$
x_{i, j}:= \begin{cases}\mathrm{id}_{1} & \text { if } i=\sigma(j) \tag{3.17}\\ 0 & \text { otherwise } .\end{cases}
$$

We have

$$
\begin{array}{rlr}
f & =f \prod_{i} x_{i, \sigma(i)} & \\
& =f \prod_{i} g \prod_{j} x_{i, j} & \\
& =f g^{n} \prod_{i, j} x_{i, j} & \\
& =g f^{n} \tau_{n ; n} \prod_{i, j} x_{i, j} & \\
& =g f^{n}\left(\prod_{i, j} x_{j, i}\right) \tau_{n ; n} & \\
& =g\left(\prod_{i} f \prod_{j} x_{j, i}\right) \tau_{n ; n} & \\
& =g\left(\prod_{i} x_{\sigma(i), i}\right) \tau_{n ; n} & \text { since } 0 \text { neutral for } g \\
& =g \sigma &
\end{array}
$$

since $\tau_{n ; n}((i-1) n+\sigma(i))=(\sigma(i)-1) n+i$. Taking $\sigma=\operatorname{id}_{n}$ we find $f=g$. Then, for a general σ, we have $f=g \sigma=f \sigma$.
Proposition 3.18 (Classical Eckmann-Hilton argument [EH62]). For all $n \geq 2$, we have $\mathrm{cMon}=\mathrm{Mon}^{\otimes n}$. In particular, $\mathrm{cMon}=\mathrm{cMon} \otimes \mathrm{cMon}$.
Proof. In Mon \otimes Mon, denote by 0 and λ the operation from the left instance of Mon, while 0^{\prime} and λ^{\prime} are those from the right instance. Since $0 \boxtimes 0^{\prime}$, we immediately conclude that $0=0^{\prime}$. Then, 0 is neutral for both λ and λ^{\prime}, and by definition, $\lambda \boxtimes \lambda^{\prime}$. Thus, by proposition $3.16, \lambda=\lambda^{\prime}$ and λ is commutative. In other words, $\mathrm{cMon}=$ Mon \otimes Mon. Similarly, $\mathrm{cMon}=\mathrm{cMon} \otimes$ Mon.

Let $\mathrm{K}, \mathrm{L} \in \mathcal{L}$ aw. We say that K is a simple L -theory if it can be decomposed as $K=K^{\prime} \otimes L$, for some $K^{\prime} \in \mathcal{L}$ aw. It is an L-theory if it is the quotient of a simple L-theory.

Let K be an Mon-theory, i.e. a quotient of a theory of the form $\mathrm{K}^{\prime} \otimes \mathrm{Mon}$. The set $K(1,1)$ has a semiring structure, where multiplication is given by composition, and where addition is defined as

$$
\begin{equation*}
x+y:=\lambda\langle x, y\rangle \tag{3.19}
\end{equation*}
$$

for $x, y: 1 \longrightarrow 1$. We denote this semiring by $\varepsilon_{1} \mathrm{~K}$. It is easy to check that the n-ary sum of $x_{1}, \ldots, x_{n}: 1 \longrightarrow 1$ is

$$
\begin{equation*}
\sum_{i} x_{i}=\lambda_{n}\left\langle x_{i}\right\rangle_{i} \tag{3.20}
\end{equation*}
$$

Proposition 3.21. Ab-theories are exactly of the form Mod_{R}, where R is a commutative ring.

Proof. If K is an Ab -theory, then it is easy to see that $\mathrm{K}=\operatorname{Mod}_{R}$, where $R:=\varepsilon_{1} \mathrm{~K}$.
probably not the
best place for it
probably similar results for Mon- and cMontheories.

Lemma 3.22. Let $A, B \subseteq \mathrm{~K} / 1$ be such that
(1) $A \cup B$ generates K ;

(2) $A \otimes B$.

Then K is a quotient of $\left.\left.\mathrm{K}\right|_{A} \otimes \mathrm{~K}\right|_{B}$.
Proof. Since $A \otimes B$ in K , the natural functors $\left.\mathrm{K}\right|_{A} \longrightarrow \mathrm{~K}$ and $\left.\mathrm{K}\right|_{B} \longrightarrow \mathrm{~K}$ extend to a functor $F:\left.\mathrm{K}_{A} \otimes \mathrm{~K}\right|_{B} \longrightarrow \mathrm{~K}$. Since $A \cup B$ generates K, F is full.
Proposition 3.23. Let $\mathrm{K}, \mathrm{L} \in \mathcal{L}$ aw, where K is commutative. Then L is a K -theory if and only if it there exists a morphism $F: \mathrm{K} \longrightarrow \mathrm{L}$ such that $F(\mathrm{~K} / 1) \boxtimes \mathrm{L} / 1$.
Proof. (1) (\Longrightarrow) Assume that L is a K-theory, i.e. obtained as a quotient of a simple K-theory, say $\mathrm{L}^{\prime}=\mathrm{L}^{\prime \prime} \otimes \mathrm{K}$. Let F be the composite

$$
\begin{equation*}
\mathrm{K} \longrightarrow \mathrm{~L}^{\prime \prime} \otimes \mathrm{K} \longrightarrow \mathrm{~L} . \tag{3.24}
\end{equation*}
$$

Let $A:=\mathrm{K} / 1$ and $B:=\mathrm{L}^{\prime \prime} / 1$. Then by definition of the tensor product, in L^{\prime}, we have $A \boxtimes B$. Furthermore, by commutativity, in K we have $A \boxtimes A$. Thus, in L^{\prime}, we have $A \boxtimes A \cup B$. Since L^{\prime} is generated by $A \cup B$, it follows from lemma 3.3 that $A \boxtimes \mathrm{~L}^{\prime} / 1$. Finally, $F(\mathrm{~K} / 1)=F(A) \boxtimes F\left(\mathrm{~L}^{\prime} / 1\right)=\mathrm{L} / 1$.
(2) ($\Longleftarrow)$ Note that $A:=F(\mathrm{~K} / 1)$ and $B:=\mathrm{L} / 1$ satisfy the requirements of lemma 3.22.

Corollary 3.25. A theory K is a cMon-theory if and only if it contains cMon and $\{0, \lambda\} \boxtimes \mathrm{K} / 1$.
Proof. By the Eckmann-Hilton argument (proposition 3.18), cMon is commutative.

To be precise, we

need to invoke
proposition 5.2

Assume that K is a Mon-theory, and let $f \in \mathrm{~K}(n, 1)$. For $1 \leq i \leq n$, the i-th axis

Proposition 3.27. We have $f=\lambda_{n} \prod_{i=1}^{n} f^{[i]}$. Further, the $f^{[i]}$,s are unique for this property.
Proof. We have

$$
\begin{aligned}
f & =f \prod_{i=1}^{n} \lambda_{n}\left(0^{i-1} \times \operatorname{id}_{1} \times 0^{n-i}\right) \\
& =f \lambda_{n}^{n} \prod_{i=1}^{n}\left(0^{i-1} \times \operatorname{id}_{1} \times 0^{n-i}\right) \\
& =\lambda_{n} f^{n} \tau_{n ; n} \prod_{i=1}^{n}\left(0^{i-1} \times \mathrm{id}_{1} \times 0^{n-i}\right) \quad \text { since } f \boxtimes \lambda_{n} \\
& =\lambda_{n} f^{n} \prod_{i=1}^{n}\left(0^{i-1} \times \operatorname{id}_{1} \times 0^{n-i}\right) \\
& =\lambda_{n} \prod_{i=1}^{n} f\left(0^{i-1} \times \operatorname{id}_{1} \times 0^{n-i}\right) \\
& =\lambda_{n} \prod_{i=1}^{n} f^{[i]} .
\end{aligned}
$$

If $f=\lambda_{n} \prod_{i=1}^{n} f_{i}$, for some $f_{1}, \ldots, f_{n}: 1 \longrightarrow 1$, then

$$
\begin{aligned}
f^{[i]} & =f\left(0^{i-1} \times \mathrm{id}_{1} \times 0^{n-i}\right) \\
& =\left(\lambda_{n} \prod_{j=1}^{n} f_{j}\right)\left(0^{i-1} \times \operatorname{id}_{1} \times 0^{n-i}\right) \\
& =\lambda_{n}\left(\left(\prod_{j=1}^{i-1} f_{j} 0\right) \times f_{i} \times\left(\prod_{j=i+1}^{n} f_{j} 0\right)\right) \\
& =\lambda_{n}\left(0^{i-1} \times f_{i} \times 0^{n-i}\right) \\
& =f_{i} .
\end{aligned}
$$

$$
=\lambda_{n}\left(0^{i-1} \times f_{i} \times 0^{n-i}\right) \quad \text { since } f_{j} \boxtimes 0
$$

3.4. Matrix calculus. Let K be a Mon-theory. Let $f=\left(f_{i, j}\right)_{1 \leq i \leq m, 1 \leq j \leq n}$ be a $m \times n$ matrix whose entries are elements of $\mathrm{K}(1,1)$. It induces a morphism $n \longrightarrow m$ (note the order), as

$$
\begin{equation*}
\left\langle\lambda_{n} \prod_{j=1}^{n} f_{i, j}: n \longrightarrow 1\right\rangle_{1 \leq i \leq m} \tag{3.28}
\end{equation*}
$$

Lemma 3.29. Conversely, a morphism $g: n \longrightarrow m$ decomposes as $\left(g_{i, j}\right)_{1 \leq i \leq m, 1 \leq j \leq n}$, where

$$
\begin{equation*}
g_{i, j}:=\left(\pi_{i} g\right)^{[j]} \tag{3.30}
\end{equation*}
$$

Therefore, there is a bijection $M_{m \times n}(\mathrm{~K}(1,1)) \cong \mathrm{K}(n, m)$.
Proof. We have, $g=\left\langle\pi_{i} g\right\rangle_{1 \leq i \leq m}$, and by proposition 3.27, $\pi_{i} g=\lambda_{n} \prod_{j=1}^{n}\left(\pi_{i} g\right)^{[j]}$. The bijection follows from the fact that a morphism $g: n \longrightarrow m$ is uniquely determined by its projections $\pi_{i} g$, which are themselves uniquely determined by their axes, see proposition 3.27.

In particular, if f is a morphism $m \longrightarrow 1$, then its matrix has a single row whose entries are the axes of f.
Lemma 3.31. If $f=\left(f_{i, j}\right)_{1 \leq i \leq m, 1 \leq j \leq n}: n \longrightarrow m$ and $g=\left(g_{j, k}\right)_{1 \leq j \leq n, 1 \leq k \leq p}: p \longrightarrow n$, then the composite $f g: p \longrightarrow m$ is given by the expected matrix product

$$
\begin{equation*}
(f g)_{i, k}=\sum_{j} f_{i, j} g_{j, k} \tag{3.32}
\end{equation*}
$$

Proof. We have

$$
\begin{array}{rlr}
(f g)_{i, k} & =\left(\pi_{i} f g\right)^{[k]} & \text { by lemma } 3.29 \\
& =\pi_{i} f g\left(0^{k-1} \times \mathrm{id}_{1} \times 0^{p-k}\right) & \text { by definition } \\
& =\pi_{i} f\left\langle\pi_{j} g\right\rangle_{j}\left(0^{k-1} \times \mathrm{id}_{1} \times 0^{p-k}\right) & \\
& =\pi_{i} f\left\langle\pi_{j} g\left(0^{k-1} \times \mathrm{id}_{1} \times 0^{p-k}\right)\right\rangle_{j} & \\
& =\pi_{i} f\left\langle g_{j, k}\right\rangle_{j} & \\
& =\lambda_{n}\left(\prod_{j} f_{i, j}\right)\left\langle g_{j, k}\right\rangle_{j} & \\
& =\lambda_{n}\left\langle f_{i, j} g_{j, k}\right\rangle_{j} \\
& =\sum_{j} f_{i, j} g_{j, k}
\end{array}
$$

Lemma 3.33. Let $\sigma \in S_{n}$ be a permutation. The matrix of the induced morphism $\sigma: n \longrightarrow n$ is given by

$$
\left(\sigma_{i, j}\right)_{1 \leq i, j \leq n}:= \begin{cases}\operatorname{id}_{1} & \text { if } i=\sigma(j) \tag{3.34}\\ 0 & \text { otherwise }\end{cases}
$$

Proof. For the time being, let $\left(s_{i, j}\right)_{1 \leq i, j \leq n}$ be the matrix defined above, and s be the morphism $n \longrightarrow n$ it induces. By definition,

$$
\begin{equation*}
s=\left\langle\lambda_{n} \prod_{j} s_{i, j}\right\rangle_{i}=\left\langle\pi_{\sigma(i)}\right\rangle_{i}=\sigma \tag{3.35}
\end{equation*}
$$

The matrix of $\operatorname{id}_{n} \in S_{n}$ is thus the identity matrix, also denoted by I_{n} :

$$
I_{n}:=\left(\begin{array}{ccc}
\mathrm{id}_{1} & \cdots & 0 \tag{3.36}\\
\vdots & \ddots & \vdots \\
0 & \cdots & \mathrm{id}_{1}
\end{array}\right)
$$

Lemma 3.37. (1) For $f: m \longrightarrow 1, \sigma \in S_{m}$, and $1 \leq i \leq m$, we have $(f \sigma)^{[i]}=$ $f^{\left[\sigma^{-1}(i)\right]}$.
(2) For $f: m \longrightarrow 1, g: n \longrightarrow 1,1 \leq i \leq m$, and $1 \leq j \leq n$, we have $\left(f g^{m}\right)^{[(i-1) n+j]}=f^{[i]} g^{[j]}$. In particular, $f \boxtimes g$ if and only if all the axes of f commute (multiplicatively) with all the axes of g.
Proof. (1) We have

$$
f \sigma=\left(\begin{array}{lll}
f^{[1]} & \cdots & f^{[m]}
\end{array}\right) \sigma=\left(\begin{array}{lll}
f^{\left[\sigma^{-1}(1)\right]} & \cdots & f^{\left[\sigma^{-1}(m)\right]} \tag{3.38}
\end{array}\right)
$$

(2) We have

$$
\begin{aligned}
& f g^{m}=\left(\begin{array}{lll}
f^{[1]} & \cdots & f^{[m]}
\end{array}\right)\left(\begin{array}{ccc}
g & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & g
\end{array}\right) \\
& =\left(\begin{array}{lll}
f^{[1]} & \cdots & f^{[m]}
\end{array}\right)\left(\begin{array}{ccccccc}
g^{[1]} & \cdots & g^{[n]} & 0 & \cdots & \cdots & 0 \\
\vdots & & & \ddots & & & \vdots \\
0 & \cdots & \cdots & 0 & g^{[1]} & \cdots & g^{[n]}
\end{array}\right) \\
& =\left(\begin{array}{llllll}
f^{[1]} & g^{[1]} & f^{[1]} & g^{[2]} & \cdots & f^{[1]}
\end{array} g^{[n]} \quad f^{[2]} g^{[1]} \quad \cdots \quad f^{[m]} g^{[n]}\right) .
\end{aligned}
$$

3.5. Center. Let $\mathrm{K} \in \mathcal{L}$ aw. Its center $Z(\mathrm{~K})$ is the subtheory of K generated by those morphisms $f \in \mathrm{~K} / 1$ such that $f \boxtimes \mathrm{~K} / 1$. We say that K is commutative if $Z(\mathrm{~K})=\mathrm{K}$. In other words $f \in Z(\mathrm{~K})(m, n)$ if and only if $f: X^{m} \longrightarrow X^{n}$ is a morphism of models, for all $X \in \mathrm{~K}($ (Set $)$. By lemma 3.3, K is commutative if and only if $\mathrm{K} / 1 \boxtimes \mathrm{~K} / 1$.

Lemma 3.39. Let $\mathrm{K}, \mathrm{L} \in \mathcal{L}$ aw. Then $Z(\mathrm{~K}) \otimes Z(\mathrm{~L}) \subseteq Z(\mathrm{~K} \otimes \mathrm{~L})$.
Proof. Let $f \in Z(\mathrm{~K})$. Then by definition, $f \otimes \mathrm{~K} / 1$ in K , thus the same holds in $\mathrm{K} \otimes \mathrm{L}$. Further, $f \otimes \mathrm{~L} / 1$ in $\mathrm{K} \otimes \mathrm{L}$. Finally, $f \in Z(\mathrm{~K} \otimes \mathrm{~L})$. The same reasoning applies if $f \in Z(\mathrm{~L})$.

Proposition 3.40. Let $\mathrm{id}=\mathrm{id}_{\mathrm{K}(\text { Set })}$ be the identity functor of $\mathrm{K}($ Set $)$. There is a bijection $Z(\mathrm{~K})(m, n) \longrightarrow\left[\mathrm{id}^{m}, \mathrm{id}^{n}\right]$ which induces an equivalence $Z(\mathrm{~K}) \longrightarrow \mathcal{J}$, where \mathcal{J} is the full subcategory of $[\mathrm{K}(\operatorname{Set}), \mathrm{K}(\operatorname{Set})]$ spanned by powers of id .
Proof. Since $Z(\mathrm{~K})(m, n)=Z(\mathrm{~K})(m, 1)^{n}$ and $\left[\mathrm{id}^{m}, \mathrm{id}^{n}\right]=\left[\mathrm{id}^{m}, \mathrm{id}\right]^{n}$, it is enough to prove the claim in the case $n=1$. Let $f \in Z(\mathrm{~K})(m, 1)$. For $X \in \mathrm{~K}($ Set $)$, let $\alpha_{f, X}:=X f: X^{m} \longrightarrow X$. We check that this is a morphism of models using lemma 2.3: for $g: n \longrightarrow 1$

$$
\begin{array}{rlr}
\alpha_{f, X} \circ\left(X^{m} g\right) & =(X f)\left(X^{m} g\right) & \text { by definition } \\
& =(X f)\left(X\left(g^{m} \tau_{m ; n}\right)\right) & \text { by lemma } 2.17 \\
& =X\left(f g^{m} \tau_{m ; n}\right) & \\
& =X\left(g f^{n}\right) & \text { since } f \boxtimes g \\
& =(X g)(X f)^{n} & \\
& =(X g) \alpha_{f, X}^{n} . &
\end{array}
$$

For $F: X \longrightarrow Y$ a morphism of models, we have

$$
\begin{equation*}
F \alpha_{f, X}=F(X f)=(Y f) F^{m}=\alpha_{f, Y} F^{m}, \tag{3.41}
\end{equation*}
$$

or in other words, the following diagram commutes:

Consequently, the $\alpha_{f, X}$'s assemble into a natural transformation α_{f} : $\mathrm{id}^{m} \longrightarrow \mathrm{id}$. Further, the mapping $f \longmapsto \alpha_{f}$ is injective since $\alpha_{f, K_{m}}: K_{m}^{m} \longrightarrow K_{m}$ maps id $_{m}$ to f.

Conversely, let $\beta: \mathrm{id}^{m} \longrightarrow \mathrm{id}$ be a natural transformation. Let $b:=\beta_{K_{m}}\left(\mathrm{id}_{m}\right):$ $m \longrightarrow 1$. We show that for $X \in \mathrm{~K}($ Set $)$, the morphism β_{X} is in fact $X b: X^{m} \longrightarrow X$. Let $x \in X^{m}$, and $\tilde{x}: K_{m} \longrightarrow X$ be the corresponding morphism under the Yoneda lemma. Then by naturality of β, the following square commutes:

Thus,

$$
\begin{equation*}
\beta_{X}(x)=\beta_{X} \tilde{x}^{m}\left(\mathrm{id}_{m}\right)=\tilde{x} \beta_{K_{m}}\left(\mathrm{id}_{m}\right)=\tilde{x}(a)=(X a)(x) . \tag{3.44}
\end{equation*}
$$

Consequently, $\beta=\alpha_{b}$, and the map $\alpha: \mathrm{K}(m, 1) \longrightarrow\left[\mathrm{id}^{m}, \mathrm{id}\right]$ is a bijection.

4. Morita theory

Let L be a Lawvere theory. For $k \in \mathbb{N}$, the matrix theory [ARV11, definition 15.4] $\mathrm{L}^{[k]}$ is the Lawvere theory where $\mathrm{L}^{[k]}(m, n)=\mathrm{L}(k m, k n)$. The structural morphism $\aleph_{0}^{\mathrm{op}} \longrightarrow \mathrm{L}^{[k]}$ maps the projection $\pi_{i}: n \longrightarrow 1$ to $\left\langle\pi_{k(i-1)+1}, \pi_{k(i-1)+2}, \ldots, \pi_{k i}\right\rangle:$ $k n \longrightarrow k$.

Let now $u: 1 \longrightarrow 1$ be an idempotent operation of L . It is pseudoinvertible if there exists $k \in \mathbb{N}, a: 1 \longrightarrow k$ and $b: k \longrightarrow 1$ such that

$$
\begin{equation*}
b u^{k} a=\operatorname{id}_{1} . \tag{4.1}
\end{equation*}
$$

The idempotent modification $u \mathrm{~L} u$ of L is the subcategory of L spanned by those morphisms $f: m \longrightarrow n$ such that $f u^{m}=f=u^{n} f$. The identity of m in $u \mathbf{L} u$ is u^{m}, and the i-th projection $m \longrightarrow 1$ is $u \pi_{i}$.

Lemma 4.2. The idempotent modification $u \mathrm{~L} u$ is generated by morphisms of the form $u f u^{n}$, where $f: n \longrightarrow 1$ and $n \in \mathbb{N}$.
Proof. If $g: m \longrightarrow n$ is in $u \mathrm{~L} u$, then

$$
g=u^{n} g u^{m}=u^{n}\left\langle\pi_{i} g\right\rangle_{1 \leq i \leq n} u^{m}=\left\langle u\left(\pi_{i} g\right) u^{m}\right\rangle_{1 \leq i \leq n} .
$$

Two Lawvere theories $\mathrm{K}, \mathrm{L} \in \mathcal{L}$ aw are Morita equivalent [ARV11, definition 15.2], denoted by $\mathrm{K} \sim \mathrm{L}$, if their categories of models K (Set) and L (Set) are equivalent.

Lemma 4.3. Let $\mathrm{K}, \mathrm{K}^{\prime}, \mathrm{L}, \mathrm{L}^{\prime} \in \mathcal{L}$ aw. If $\mathrm{K} \sim \mathrm{K}^{\prime}$ and $\mathrm{L} \sim \mathrm{L}^{\prime}$, then $\mathrm{K} \otimes \mathrm{L} \sim \mathrm{K}^{\prime} \otimes \mathrm{L}^{\prime}$.
Proof. Follows from theorem 3.10 and corollary 3.12.
Proposition 4.4. Two commutative $\mathrm{K}, \mathrm{L} \in \mathcal{L}$ aw are Morita equivalent if and only if they are isomorphic.

Proof. Surely, if K and L are isomorphic, then they are Morita equivalent. Conversely, by proposition 3.40,

$$
\begin{equation*}
\mathrm{K}(m, n)=Z(\mathrm{~K})(m, n)=\left[\mathrm{id}_{\mathrm{K}(\text { Set })}^{m}, \mathrm{id}_{\mathrm{K}(\text { Set })}^{n}\right] \cong\left[\mathrm{id}_{\mathrm{L}(\text { Set })}^{m}, \mathrm{id}_{\mathrm{L}(\text { Set })}^{n}\right]=\mathrm{L}(m, n) \tag{4.5}
\end{equation*}
$$

Theorem 4.6 ([ARV11, theorem 15.7]). Let $\mathrm{K}, \mathrm{L} \in \mathcal{L}$ aw. We have $\mathrm{K} \sim \mathrm{L}$ if and only if $\mathrm{K} \simeq u \mathrm{~L}^{[k]} u$, for some $k \geq 1$ and u a pseudoinvertible idempotent of the matrix theory $\mathrm{L}^{[k]}$.

5. Stability

A Lawvere theory K is said to be syntactically stable at $\operatorname{rank} k \in \mathbb{N}$ if the canonical map $i_{\mathrm{K} \otimes k}: \mathrm{K}^{\otimes k} \longrightarrow \mathrm{~K}^{\otimes k} \otimes \mathrm{~K}=\mathrm{K}^{\otimes k+1}$ is an equivalence of categories. Similarly, K is semantically stable at rank k if the forgetful functor $i_{\mathrm{K}^{\otimes k}}^{*}: \mathrm{K}^{\otimes k+1}$ (Set) $\longrightarrow \mathrm{K}^{\otimes k}$ (Set) is an equivalence of categories. Of course, if K is syntactically stable at rank k, then it is semantically stable as well. We say that K is syntactically or semantically stable if it is so at rank 1 .

Proposition 5.1. If K is commutative and semantically stable, then it is syntactically stable.

Proof. Follows from lemma 3.39 and proposition 4.4.
Proposition 5.2. If K is syntactically stable, then it is commutative.

Proof. Denote by $i_{1}, i_{2}: \mathrm{K} \longrightarrow \mathrm{K} \otimes \mathrm{K}$ the canonical morphisms into the left and right component, respectively, and let $\sigma: \mathrm{K} \otimes \mathrm{K} \longrightarrow \mathrm{K} \otimes \mathrm{K}$ be the symmetry involution, i.e. such that $\sigma i_{1}=i_{2}$ and conversely. Then by assumption, i_{1} is an isomorphisms, and thus, so is i_{2}. By definition, for $f, g \in \mathrm{~K} / 1$, we have $i_{1}(f) \boxtimes i_{2}(g)$, and applying i_{1}^{-1} gives $f \boxtimes i_{1}^{-1} i_{2}(g)$. Note that $i_{1}^{-1} i_{2}=i_{1}^{-1} \sigma i_{1}=i_{2}^{-1} i_{1}$ is an involution. In particular,

$$
\begin{equation*}
f \boxtimes i_{1}^{-1} i_{2}\left(i_{1}^{-1} i_{2}(g)\right)=g, \tag{5.3}
\end{equation*}
$$

for all $f, g \in \mathrm{~K} / 1$.
Unfortunately, the converse of proposition 5.2 does not hold, see e.g. Mag_{1}.

6. Conclusion

TODO: Write the conclusion.

References

[AR94] Jiří Adámek and Jiří Rosický. Locally Presentable and Accessible Categories, volume 189 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1994.
[ARV11] Jiří Adámek, Jiří Rosický, and E. M. Vitale. Algebraic Theories: A Categorical Introduction to General Algebra. Number 184 in Cambridge Tracts in Mathematics. Cambridge Univ. Press, Cambridge, 2011.
[Bor94a] Francis Borceux. Handbook of Categorical Algebra. 1, volume 50 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge, 1994.
[Bor94b] Francis Borceux. Handbook of Categorical Algebra. 2, volume 51 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge, 1994.
[Bor94c] Francis Borceux. Handbook of Categorical Algebra. 3, volume 52 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge, 1994.
[BV79] J.M. Boardman and R.M. Vogt. Tensor products of theories, application to infinite loop spaces. Journal of Pure and Applied Algebra, 14(2):117-129, March 1979.
[BV94] Francis Borceux and Enrico M. Vitale. On the notion of bimodel for functorial semantics. Applied Categorical Structures, 2(3):283-295, 1994.
[Che20] Eugenia Cheng. Distributive laws for Lawvere theories. Compositionality, 2:1, May 2020.
[EH62] B. Eckmann and P. J. Hilton. Group-like structures in general categories I multiplications and comultiplications. Mathematische Annalen, 145(3):227-255, June 1962.
[Fre66] P. Freyd. Algebra valued functors in general and tensor products in particular. Colloquium Mathematicum, 14(1):89-106, 1966.
[Fuj19] Soichiro Fujii. A unified framework for notions of algebraic theory. Theory and Applications of Categories, 34:Paper No. 40, 1246-1316, 2019.
[HP07] Martin Hyland and John Power. The category theoretic understanding of universal algebra: Lawvere theories and monads. In Computation, Meaning, and Logic: Articles Dedicated to Gordon Plotkin, volume 172 of Electron. Notes Theor. Comput. Sci., pages 437-458. Elsevier Sci. B. V., Amsterdam, 2007.
[Law04] F. William Lawvere. Functorial semantics of algebraic theories and some algebraic problems in the context of functorial semantics of algebraic theoriesc. Reprints in Theory and Applications of Categories, (5):1-121, 2004.
[LP09] Stephen Lack and John Power. Gabriel-Ulmer duality and Lawvere theories enriched over a general base. Journal of Functional Programming, 19(3-4):265-286, 2009.

[^0]: Date: 2021.

