STABILITY OF LAWVERE THEORIES

CÉDRIC HO THANH

ABSTRACT. TODO: Write the abstract.

Contents

1. Introduction	1
1.1. Prerequisites	1
2. Lawvere theories	2
2.1. Definition	2
2.2. Models	2
2.3. Products of models	3
3. Tensor product	5
3.1. Commutativity	5
3.2. Tensor product	5
3.3. Derived theories	7
3.4. Matrix calculus	10
3.5. Center	11
4. Morita theory	12
5. Stability	13
6. Conclusion	14
References	14

1. INTRODUCTION

TODO: Write the introduction

1.1. **Prerequisites.** Let \mathcal{C} be a category with products. Let I be some index set, and $d_i \in \mathcal{C}$, for $i \in I$. The projection onto the *i*-th component is denoted by $\pi_i : \prod_j d_j \longrightarrow d_i$. If all the d_i 's are equal to some $d \in \mathcal{C}$, we write $d^I := \prod_{i \in I} d_i$. By universal property, a collection of morphisms $g_i : c \longrightarrow d_i$ induces a morphism

$$\langle g_i \rangle_{i \in I} : c \longrightarrow \prod_{i \in I} d_i.$$
 (1.1)

If all the g_i 's are identities, then $\Delta_I := \langle \mathrm{id}_c \rangle_{i \in I} : c \longrightarrow c^I$ is called a *diagonal* of c. We abbreviate Δ_I as simply Δ if no ambiguity arise. If $f : b \longrightarrow c$ and $h_i : d_i \longrightarrow e_i$, then

$$\langle h_i g_i f \rangle_i = \left(\prod_i h_i\right) \langle g_i \rangle_i f.$$
 (1.2)

 $\mathit{Date:}\ 2021$.

CÉDRIC HO THANH

In particular, $\langle g_i \rangle_i = (\prod_i g_i) \Delta$. A bijection $\sigma : I \longrightarrow I$ induces an automorphism

$$\sigma \coloneqq \left\langle \pi_{\sigma(i)} \right\rangle_{i \in I} \colon d^{I} \longrightarrow d^{I}. \tag{1.3}$$

We denote by S_n the *n*-th symmetric group, which is the group of automorphisms of an *n*-element set.

2. Lawvere theories

2.1. **Definition.** For $n \in \mathbb{N}$, let [n] be the *n*-elements set $\{1, 2, \ldots, n\}$. If no ambiguity arises, we shall simply denote it by n = [n]. Let \aleph_0 be the full subcategory of Set spanned by sets of the form *n*. It is a skeleton of Set_f , the category of finite sets.

Clearly, \aleph_0 has finite coproducts, given by addition of numbers. Therefore, $\aleph_0^{\rm op}$ has finite products, also given by addition of numbers. In particular, all objects of $\aleph_0^{\rm op}$ are iterated products of the object 1.

A Lawvere theory (also called one-storted algebraic theory [ARV11, definition 11.3]) is a category L with finite products, equipped with a functor $l: \aleph_0^{\text{op}} \longrightarrow \mathsf{L}$ that is an identity on objects and preserves finite products. In other words, L is a category with finite products, where all objects are iterated products of a distinguished object 1. Therefore, the functor l shall remain implicit. A morphism $F: \mathsf{L} \longrightarrow \mathsf{K}$ between Lawvere theories is simply a functor below \aleph_0^{op} . Let \mathcal{L} aw be the category of Lawvere theories and such morphisms. It has an initial object, namely \aleph_0^{op} itself.

2.2. Models. Let C be a category with finite products. A model of L in C is a finite product preserving functor $X : L \longrightarrow C$. If no ambiguity arise, we write X^n instead of Xn, X instead of $X^1 = X1$, and if $f \in \mathcal{L}(m, n)$, we write $f : X^m \longrightarrow X^n$ instead of Xf. With these notations, a model X is the datum of an object $X \in C$ together with a morphism $f : X^n \longrightarrow X$ for every morphism $f \in L(n, 1)$, satisfying the same relations as L. A morphism of models $\alpha : X \longrightarrow Y$ is simply a natural transformation. Let L(C) be the category of models of L in C and $U_L : L(C) \longrightarrow C$ be the forgetful functor. It maps a model X to $X = X^1$, and $\alpha : X \longrightarrow Y$ to $\alpha = \alpha_1$.

Lemma 2.1. If $\alpha : X \longrightarrow Y$ is a morphism of models, then $\alpha_n : X^n \longrightarrow Y^n$ is simply $(\alpha_1)^n$.

Proof. Consider the projection $\pi_i : n \longrightarrow 1$ in L. Since α is a natural transformation, the following square commutes:

Since this holds for all $1 \le i \le n$, we conclude that $\alpha_n = (\alpha_1)^n$.

Lemma 2.3. Let $X, Y \in L(\mathbb{C})$ and $\beta : X \longrightarrow Y$ be a morphism in \mathbb{C} . Then β extends as a morphism of models $X \longrightarrow Y$ if and only if for all $n \in \mathbb{N}$ and $f \in L(n, 1)$, the

following square commutes

Proof. Necessity is clear. We now prove that the condition is sufficient. Note that a morphism $g: n \longrightarrow m$ in L can be decomposed as $g = \langle \pi_i g \rangle_{1 \le i \le m}$, and that each $\pi_i g$ is a morphism $n \longrightarrow 1$. By assumption, $\pi_i g \beta^n = \beta \pi_i g$, thus

$$g\beta^{n} = \langle \pi_{i}g\beta^{n} \rangle_{1 \le i \le m} = \langle \beta\pi_{i}g \rangle_{1 \le i \le m} = \beta g.$$

$$(2.5)$$

Thanks to lemmas 2.1 and 2.3, we can write the *n*-th component of $\alpha : X \longrightarrow Y$ simply as $\alpha^n : X^n \longrightarrow Y^n$. Consider the case $\mathcal{C} = \text{Set}$, and let $n \in \mathbb{N}$. The *n*-th representable model of L [ARV11, remark 1.12] is $L_n := L(n, -) : L \longrightarrow \text{Set}$.

Lemma 2.6 (Yoneda lemma). For $X \in L(Set)$ there is an natural isomorphism (of sets)

$$X^n \cong \mathsf{L}(\mathsf{Set})(L_n, X). \tag{2.7}$$

More precisely, it maps an element $x \in X^n$ to the unique morphism $\tilde{x} : L_n \longrightarrow X$ such that $\tilde{x}^n(\operatorname{id}_n) = x$.

2.3. Products of models. By [AR94, theorem 1.46 and corollary 1.52], L(Set) is a finitely locally presentable category, and in particular, it has all limits and colimits. The same result cannot be expected to hold for a general ground category C with finite products, but as we will see in lemma 2.11, L(C) still has finite products.

For integers m, n > 0, let $\tau_{n;m} \in S_{mn}$ be the *shuffle permutation*, i.e. the permutation such that for all $1 \le i \le m$ and $1 \le j \le n$, we have

$$\tau_{n;m}((j-1)n+i) = (i-1)m+j.$$
(2.8)

In other words, $\tau_{n;m}$ "rearranges m tuples of n elements into n tuples of m elements". If n or m is 0, then by convention, let $\tau_{n;m}$ be the identity on the empty set. We consider $\tau_{n;m}$ as a morphism $mn \longrightarrow mn$ of \aleph_0^{op} , and therefore as a morphism in any Lawvere theory.

If $c_1, \ldots, c_n \in \mathbb{C}$ and $m \in \mathbb{N}$, then there is an isomorphism

$$\tau = \tau_{c_1,\dots,c_n;m} : \left(\prod_i c_i\right)^m \longrightarrow \prod_i c_i^m \tag{2.9}$$

induced by $\tau_{n;m}$, which again, rearranges m tuples of n elements into n tuples of m elements. Explicitly, if $p_k : (\prod_i c_i)^m \longrightarrow c_l$ is the projection into the k-th component, where $1 \le k \le mn$, $1 \le l \le n$, and $l \equiv k \mod n$, then τ is the universal morphism

$$\tau = \left\langle p_{\tau_{n;m}(k)} \right\rangle_{1 \le k \le mn}. \tag{2.10}$$

If all the c_i 's are equal to some object c, then we write $\tau_{c:n:m}$ instead of $\tau_{c...,c:m}$.

Lemma 2.11 ([ARV11, proposition 1.21]). *The category* L(C) *has finite products, given as follows:*

 if the terminal object of C is 1, then the terminal model is the constant functor at 1;

(2) if
$$X, Y \in L(\mathbb{C})$$
, then $X \times Y$ is the functor
 $X \times Y : L \longrightarrow \mathbb{C}$
 $n \longmapsto (X \times Y)^n$ $n \in \mathbb{N}$
 $f = e^{-1}$ $(f \oplus f) = e^{-1}$

$$f \longmapsto \tau_{X,Y;q}^{-1}(f \times f)\tau_{X,Y;p} \qquad \qquad f \in \mathsf{L}(p,q).$$

In details, $(X \times Y)f$ is the composite

$$(X \times Y)^p \xrightarrow{\tau_{X,Y;p}} X^p \times Y^p \xrightarrow{f \times f} X^q \times Y^q \xrightarrow{\tau_{X,Y;q}^{-1}} (X \times Y)^q.$$
(2.12)

Proof. The model described in point (1) is clearly terminal. Consider $X \times Y$ as defined in point (2), and define $\pi_{X,n}$ as the composite

$$(X \times Y)^n \xrightarrow{\tau_{X,Y;n}} X^n \times Y^n \xrightarrow{\pi_{X^n}} X^n.$$
(2.13)

Take $f \in L(p,q)$, and consider

$$(X \times Y)^{p} \xrightarrow{\tau_{X,Y;p}} X^{p} \times Y^{p} \xrightarrow{\pi_{X}p} X^{p}$$

$$\downarrow (X \times Y)^{f} \qquad \downarrow f \times f \qquad \downarrow f$$

$$(X \times Y)^{q} \xrightarrow{\tau_{X,Y;q}} X^{q} \times Y^{q} \xrightarrow{\pi_{X}q} X^{q}.$$

$$(2.14)$$

Both inner squares commute by definition, thus so does the outer one. In other words, $\pi_{X,p}$'s jointly define a natural transformation $\pi_X : X \times Y \longrightarrow X$. Similarly, we define $\pi_Y : X \times Y \longrightarrow Y$. We now check that $X \xleftarrow{\pi_X} X \times Y \xrightarrow{\pi_Y}$ is a limit cone. For $X \xleftarrow{\alpha} Z \xrightarrow{\beta} Y$ another cone, let γ_n be the following composite

$$Z^{n} \xrightarrow{(\alpha_{n},\beta_{n})} X^{n} \times Y^{n} \xrightarrow{\tau_{X,Y;n}^{-1}} (X \times Y)^{n}.$$
(2.15)

Akin to (2.14), it is easy to check that the γ_n 's jointly define a morphism $Z \longrightarrow X \times Y$, and that furthermore, $\alpha = \pi_X \gamma$ and $\beta = \pi_Y \gamma$. If γ' is another such morphism, then necessarily

$$\tau_{X,Y;2}\gamma'_n = \langle \alpha_n, \beta_n \rangle = \tau_{X,Y;2}\gamma, \qquad (2.16)$$

and since $\tau_{X,Y;2}$ is an isomorphism, $\gamma'_n = \gamma_n$. Finally, $X \times Y$ defined above is the product of X and Y.

Lemma 2.17. If $X \in L(\mathcal{C})$, $g \in L(n, 1)$, and $m \in \mathbb{N}$, then

$$X^{m}g = (Xg)^{m}\tau_{X;m;n} = X(g^{m}\tau_{m;n}).$$
(2.18)

Proof. The second equality follows from the fact that X preserves finite products. For the first one, we proceed by induction. The cases m = 0, 1 hold trivially, and m = 2 holds by definition of the product in L(C). Thus, assume that $m \ge 3$. We

$$\begin{split} X^{m}g &= (X \times X^{m-1})g \\ &= \tau_{X,X^{m-1};1}^{-1} (Xg \times X^{m-1}g)\tau_{X,X^{m-1};1} \\ &= (Xg \times X^{m-1}g)\tau_{X,X^{m-1};1} \\ &= (Xg \times (Xg)^{m-1}\tau_{X;m-1;n})\tau_{X,X^{m-1};1} \\ &= (Xg)^{m} (\operatorname{id}_{X} \times \tau_{X;m-1;n})\tau_{X,X^{m-1};1} \\ &= (Xg)^{m} \tau_{X;m;n}. \end{split}$$

3. Tensor product

3.1. Commutativity. Let $K, L \in \mathcal{L}$ aw, and \mathcal{C} be a category with finite products. As we saw in lemma 2.11, $L(\mathcal{C})$ has finite products, and therefore, we may consider the category of K-models in $L(\mathcal{C})$, i.e. $K(L(\mathcal{C}))$. As we will see in this section, the latter can be seen as the category of models in \mathcal{C} .

Let $f \in L(n, 1)$ and $g \in L(m, 1)$. We say that f commutes with g, denoted by $f \boxtimes g$, if the following equality is satisfied:

$$fg^n = gf^m \tau_{m;n}. \tag{3.1}$$

More generally, if $c \in \mathbb{C}$, $f \in \mathbb{C}(c^n, 1)$ and $g \in \mathbb{C}(c^m, 1)$, then we say that f commutes with g if $fg^n = gf^m \tau_{c;m;n}$, i.e. if the following diagram commutes:

Note that since $\tau_{m;n}^{-1} = \tau_{n;m}$, the commutativity relation \boxtimes is symmetric.

To simplify notations, if $A, B \subseteq L/1$ are sets of morphisms with codomain 1, then we write $A \boxtimes B$ to signify that every morphism in A commutes with every morphism of B. Let $L|_A$ be the smallest subtheory of L containing A. In particular, $L|_A/1$ is the smallest subset of L/1 such that

- (1) $A \subseteq L|_A/1;$
- (2) the projection $\pi_i : n \longrightarrow 1$ is in $L|_A/1$, for all $n \in \mathbb{N}$ and $1 \le i \le n$;
- (3) if $g, f_1, \ldots, f_n \in L|_A/1$, then $g \prod_i f_i \in L|_A/1$ and $g \langle f_i \rangle \in L|_A/1$.

If $L = L|_A$, then we say that A generates L. Trivially L/1 generates L.

Lemma 3.3. Let $A, B \subseteq L/1$. If $A \boxtimes B$, then $(L|_A/1) \boxtimes (L|_B/1)$.

Proof. By symmetry of \boxtimes , it is enough to show that $A \boxtimes (L|_B/1)$. The rest is routine verifications.

3.2. Tensor product. For $L, K \in \mathcal{L}$ aw, consider the theory $K \coprod_{\aleph_0^{\mathrm{op}}} L$ given by the categorical pushout

$$\begin{array}{c} \aleph_0^{\text{op}} & \stackrel{k}{\longrightarrow} & \mathsf{K} \\ \iota & \downarrow & \downarrow \\ \mathsf{L} & \stackrel{\Gamma}{\longrightarrow} & \mathsf{K} \coprod_{\aleph_0^{\text{op}}} \mathsf{L}. \end{array}$$
(3.4)

have

CÉDRIC HO THANH

It contains all the morphisms of K and L, but is quotiented in such a way that only one copy of \aleph_0^{op} is present. In particular, $\mathsf{K} \coprod_{\aleph^{\text{op}}} \mathsf{L}$ is still a Lawvere theory. Let $K \otimes L$, the tensor product (also called Kronecker product) of K and L [Fre66] be the following quotient:

$$\mathsf{K} \otimes \mathsf{L} \coloneqq \frac{\mathsf{K} \coprod_{\aleph_0^{\mathrm{op}}} \mathsf{L}}{fg^n \sim gf^m \tau_{m;n}, \ f \in \mathsf{K}(n,1), g \in \mathsf{L}(m,1)}.$$
(3.5)

Denote by $i_{\mathsf{K}}:\mathsf{K}\longrightarrow\mathsf{K}\otimes\mathsf{L}$ the natural map (which is not necessarily faithful!), and likewise for L. Since $\tau_{m;n}^{-1} = \tau_{n;m}$, we have $fg^n = gf^m \tau_{m;n}$ if and only if $gf^m \sim fg^n \tau_{n;m}$, which implies that the tensor product \otimes is commutative.

Proposition 3.6. The initial theory \aleph_0^{op} is a neutral element for the tensor product. *Proof.* Take $\mathsf{K} \in \mathcal{L}$ aw. Then $\mathsf{K} \coprod_{\aleph_0^{\mathrm{op}}} \aleph_0^{\mathrm{op}} = \mathsf{K}$, thus

$$\begin{split} \mathsf{K} \otimes \aleph_0^{\mathrm{op}} &= \frac{\mathsf{K}}{fg^n \sim gf^m \tau_{m;n}, \ f \in \mathsf{K}(n,1), g \in \aleph_0^{\mathrm{op}}(m,1)} \\ &= \frac{\mathsf{K}}{f\pi_i^n \sim \pi_i f^m \tau_{m;n}, \ f \in \mathsf{K}(n,1), \pi_i : m \longrightarrow 1, 1 \leq i \leq m} \end{split}$$

However, the relation $f\pi_i^n = \pi_i f^m \tau_{m;n}$ is already satisfied in K (and indeed, in any Lawvere theory), thus $\mathsf{K} \otimes \aleph_0^{\mathrm{op}} = \aleph_0^{\mathrm{op}} \otimes \mathsf{K} = \mathsf{K}$.

Lemma 3.7. Let $X \in K(L(\mathcal{C}))$.

- (1) For d ∈ hom ℵ₀^{op} we have (X1)d = (Xd)₁.
 (2) For f ∈ K/1 and g ∈ L/1 we have (X1)g ⊠ (Xf)₁.
- Proof. (1) Since X and X1 are models of Lawyere theories, they preserve finite products.
 - (2) By naturality of Xf, the following diagram commutes

$$(Xm)n \xrightarrow{(Xf)_n} (X1)n$$

$$(Xm)g \downarrow \qquad \qquad \downarrow (X1)g$$

$$(Xm)1 \xrightarrow{(Xf)_1} (X1)1.$$
(3.8)

By lemma 2.11, $(Xm)g = (X1)^m g = ((X1)g)^m \tau_{X1;m;n}$, thus

$$(Xf)_1((X1)g)^m \tau_{(X1)1;m;n} = (X1)g(Xf)_n = ((X1)g)(Xf)_1^n, \qquad (3.9)$$

which is the desired relation.

Theorem 3.10. There is an equivalence $K(L(\mathcal{C})) \simeq K \otimes L(\mathcal{C})$.

Proof. Informally, the central observation is that the relations $fg^n = gf^m \tau_{m:n}$ ranging over q encodes the fact that f induces a natural transformation between Lmodels in \mathcal{C} , i.e. a morphism in $L(\mathcal{C})$.

Let $X \in \mathsf{K}(\mathsf{L}(\mathcal{C}))$. By lemma 3.7, the following functor is a well-defined model of $\mathsf{K}\otimes\mathsf{L}$:

$$\begin{aligned} X^{\flat} &: \mathsf{K} \otimes \mathsf{L} \longrightarrow \mathfrak{C} \\ & n \longmapsto (X1)n & n \in \mathbb{N} \\ & f \longmapsto (Xf)_1 & f \in \hom \mathsf{K} \\ & g \longmapsto (X1)g & g \in \hom \mathsf{L}. \end{aligned}$$

check

 $\mathbf{6}$

This defines a functor $(-)^{\flat} : \mathsf{K}(\mathsf{L}(\mathcal{C})) \longrightarrow \mathsf{K} \otimes \mathsf{L}(\mathcal{C})$ mapping a morphism α to $\alpha^{\flat} := \alpha_1$. Conversely, let $Y \in \mathsf{K} \otimes \mathsf{L}(\mathcal{C})$. For $f \in \mathsf{L}(m, m')$ and $g \in \mathsf{L}(n, 1)$, the following square commutes

$$\begin{array}{cccc}
Y^{mn} & \xrightarrow{(Yf)^n} & Y^{m'n} \\
Y^mg & & & \downarrow & & \downarrow & & \\
Y^m & \xrightarrow{Yf} & & & Y^{m'}g \\
\end{array} \tag{3.11}$$

since in $\mathsf{K} \otimes \mathsf{L}$ we have $\pi_i f \boxtimes g$ for all $1 \leq i \leq m$. Therefore, by lemma 2.3, the $(Yf)^n$'s jointly define a morphism $(Yf)^{\bullet} : Y^m i_{\mathsf{K}} \longrightarrow Y^{m'} i_{\mathsf{K}}$. This enables the following definition

$$Y^{\sharp}: \mathsf{K} \longrightarrow \mathsf{L}(\mathfrak{C})$$
$$n \longmapsto Y^{n}i_{\mathsf{K}} \qquad n \in \mathbb{N}$$
$$f \longmapsto (Yf)^{\bullet} \qquad \qquad f \in \hom \mathsf{K},$$

from which we derive a functor $(-)^{\sharp} : \mathsf{K} \otimes \mathsf{L}(\mathcal{C}) \longrightarrow \mathsf{K}(\mathsf{L}(\mathcal{C}))$ mapping a morphism β to $(\beta_1)^{\bullet}$. Finally, it is routine verification to show that $(-)^{\flat}$ and $(-)^{\sharp}$ are mutually inverse equivalences of categories.

Corollary 3.12. We have $K(L(\mathcal{C})) \simeq L(K(\mathcal{C}))$.

3.3. Derived theories.

Let Mon be the theory of monoids. It is generated by a constant $0: 0 \rightarrow 1$, a for that binary operation $\lambda = \lambda_2: 2 \rightarrow 1$, and the following relations:

$$\lambda(\mathrm{id}_1 \times 0) = \mathrm{id}_1 = \lambda(0 \times \mathrm{id}_1), \qquad \lambda(\lambda \times \mathrm{id}_1) = \lambda(\mathrm{id}_1 \times \lambda), \tag{3.13}$$

standing for unitality and associativity, respectively. Define the *n*-ary multiplication λ_n as follows: $\lambda_0 \coloneqq 0$, $\lambda_1 \coloneqq \operatorname{id}_1$, and for $n \ge 2$, $\lambda_{n+1} \coloneqq \lambda(\lambda_n \times \operatorname{id}_1)$. Let **cMon** be the theory of commutative monoids, generated like **Mon** but with the following additional commutativity axiom:

$$\lambda = \lambda(1\,2).\tag{3.14}$$

Finally, the theory Ab of abelian groups extends cMon with a morphism $i: 1 \longrightarrow 1$ and the following invertibility axiom

$$\lambda(i \times \mathrm{id}_1) = 0 = \lambda(\mathrm{id}_1 \times i). \tag{3.15}$$

Proposition 3.16 (Eckmann–Hilton argument). Let K be a Lawvere theory, $n \ge 2$, $f, g: n \longrightarrow 1$, and $0: 0 \longrightarrow 1$. Assume that 0 is a neutral element for f and g, i.e. $f(0^{i-1} \times id_1 \times 0^{n-i}) = id_1$, for all $1 \le i \le n$, and likewise for g. If $f \boxtimes g$, then f = g and for all $\sigma \in S_n$, $f = f\sigma$.

Proof. Take $\sigma \in S_n$, and define

$$x_{i,j} \coloneqq \begin{cases} \operatorname{id}_1 & \text{if } i = \sigma(j) \\ 0 & \text{otherwise.} \end{cases}$$
(3.17)

find better term

We have

$$\begin{aligned} f &= f \prod_{i} x_{i,\sigma(i)} \\ &= f \prod_{i} g \prod_{j} x_{i,j} \\ &= f g^{n} \prod_{i,j} x_{i,j} \\ &= g f^{n} \tau_{n;n} \prod_{i,j} x_{i,j} \\ &= g f^{n} \left(\prod_{i,j} x_{j,i} \right) \tau_{n;n} \\ &= g \left(\prod_{i} f \prod_{j} x_{j,i} \right) \tau_{n;n} \\ &= g \left(\prod_{i} x_{\sigma(i),i} \right) \tau_{n;n} \\ &= g \left(\prod_{i} x_{\sigma(i),i} \right) \tau_{n;n} \end{aligned}$$
 since 0 neutral for f
$$&= g \left(\prod_{i} x_{\sigma(i),i} \right) \tau_{n;n} \\ &= g \sigma \end{aligned}$$

since $\tau_{n;n}((i-1)n + \sigma(i)) = (\sigma(i) - 1)n + i$. Taking $\sigma = \mathrm{id}_n$ we find f = g. Then, for a general σ , we have $f = g\sigma = f\sigma$.

Proposition 3.18 (Classical Eckmann–Hilton argument [EH62]). For all $n \ge 2$, we have cMon = Mon^{$\otimes n$}. In particular, cMon = cMon \otimes cMon.

Proof. In Mon \otimes Mon, denote by 0 and λ the operation from the left instance of Mon, while 0' and λ' are those from the right instance. Since $0 \boxtimes 0'$, we immediately conclude that 0 = 0'. Then, 0 is neutral for both λ and λ' , and by definition, $\lambda \boxtimes \lambda'$. Thus, by proposition 3.16, $\lambda = \lambda'$ and λ is commutative. In other words, cMon = Mon \otimes Mon. Similarly, cMon = cMon \otimes Mon.

Let $K, L \in \mathcal{L}aw$. We say that K is a *simple* L-*theory* if it can be decomposed as $K = K' \otimes L$, for some $K' \in \mathcal{L}aw$. It is an L-*theory* if it is the quotient of a simple L-theory.

Let K be an Mon-theory, i.e. a quotient of a theory of the form $K' \otimes Mon$. The set K(1,1) has a semiring structure, where multiplication is given by composition, and where addition is defined as

$$x + y \coloneqq \lambda \langle x, y \rangle \tag{3.19}$$

for $x, y: 1 \longrightarrow 1$. We denote this semiring by $\varepsilon_1 \mathsf{K}$. It is easy to check that the *n*-ary sum of $x_1, \ldots, x_n: 1 \longrightarrow 1$ is

$$\sum_{i} x_{i} = \lambda_{n} \langle x_{i} \rangle_{i} \,. \tag{3.20}$$

Proposition 3.21. Ab-theories are exactly of the form Mod_R , where R is a commutative ring.

Proof. If K is an Ab-theory, then it is easy to see that $K = Mod_R$, where $R \coloneqq \varepsilon_1 K$.

Lemma 3.22. Let $A, B \subseteq K/1$ be such that (1) $A \cup B$ generates K;

The terminology isn't great, as it suggests enrichement.

probably not the

best place for it

probably similar results for

Mon- and cMon-

theories.

(2) $A \boxtimes B$.

Then K is a quotient of $K|_A \otimes K|_B$.

Proof. Since $A \boxtimes B$ in K, the natural functors $\mathsf{K}|_A \longrightarrow \mathsf{K}$ and $\mathsf{K}|_B \longrightarrow \mathsf{K}$ extend to a functor $F : \mathsf{K}|_A \otimes \mathsf{K}|_B \longrightarrow \mathsf{K}$. Since $A \cup B$ generates K , F is full. \Box

Proposition 3.23. Let $K, L \in \mathcal{L}aw$, where K is commutative. Then L is a K-theory if and only if it there exists a morphism $F : K \longrightarrow L$ such that $F(K/1) \boxtimes L/1$.

Proof. (1) (⇒) Assume that L is a K-theory, i.e. obtained as a quotient of a simple K-theory, say L' = L'' ⊗ K. Let F be the composite

$$\mathsf{K} \longrightarrow \mathsf{L}'' \otimes \mathsf{K} \longrightarrow \mathsf{L}. \tag{3.24}$$

Let $A := \mathsf{K}/1$ and $B := \mathsf{L}''/1$. Then by definition of the tensor product, in L' , we have $A \boxtimes B$. Furthermore, by commutativity, in K we have $A \boxtimes A$. Thus, in L' , we have $A \boxtimes A \cup B$. Since L' is generated by $A \cup B$, it follows from lemma 3.3 that $A \boxtimes \mathsf{L}'/1$. Finally, $F(\mathsf{K}/1) = F(A) \boxtimes F(\mathsf{L}'/1) = \mathsf{L}/1$.

(2) (\Leftarrow) Note that $A \coloneqq F(K/1)$ and $B \coloneqq L/1$ satisfy the requirements of lemma 3.22.

Corollary 3.25. A theory K is a cMon-theory if and only if it contains cMon and $\{0, \lambda\} \boxtimes K/1$.

Proof. By the Eckmann–Hilton argument (proposition 3.18), cMon is commutative. Apply proposition 3.23. \Box

Assume that K is a Mon-theory, and let $f \in K(n, 1)$. For $1 \le i \le n$, the *i*-th axis $f^{[i]}$ of f [BV79] is defined as

$$f^{[i]} \coloneqq f(0^{i-1} \times \mathrm{id}_1 \times 0^{n-i}). \tag{3.26}$$

Proposition 3.27. We have $f = \lambda_n \prod_{i=1}^n f^{[i]}$. Further, the $f^{[i]}$'s are unique for this property.

Proof. We have

$$f = f \prod_{i=1}^{n} \lambda_n (0^{i-1} \times \mathrm{id}_1 \times 0^{n-i})$$

$$= f \lambda_n^n \prod_{i=1}^{n} (0^{i-1} \times \mathrm{id}_1 \times 0^{n-i})$$

$$= \lambda_n f^n \tau_{n;n} \prod_{i=1}^{n} (0^{i-1} \times \mathrm{id}_1 \times 0^{n-i})$$

$$= \lambda_n f^n \prod_{i=1}^{n} (0^{i-1} \times \mathrm{id}_1 \times 0^{n-i})$$

$$= \lambda_n \prod_{i=1}^{n} f(0^{i-1} \times \mathrm{id}_1 \times 0^{n-i})$$

$$= \lambda_n \prod_{i=1}^{n} f^{[i]}.$$

To be precise, we need to invoke proposition 5.2

If
$$f = \lambda_n \prod_{i=1}^n f_i$$
, for some $f_1, \dots, f_n : 1 \longrightarrow 1$, then

$$f^{[i]} = f(0^{i-1} \times \operatorname{id}_1 \times 0^{n-i})$$

$$= \left(\lambda_n \prod_{j=1}^n f_j\right) (0^{i-1} \times \operatorname{id}_1 \times 0^{n-i})$$

$$= \lambda_n \left(\left(\prod_{j=1}^{i-1} f_j 0 \right) \times f_i \times \left(\prod_{j=i+1}^n f_j 0 \right) \right)$$

$$= \lambda_n (0^{i-1} \times f_i \times 0^{n-i}) \qquad \text{since } f_j \boxtimes 0$$

$$= f_i.$$

3.4. Matrix calculus. Let K be a Mon-theory. Let $f = (f_{i,j})_{1 \le i \le m, 1 \le j \le n}$ be a $m \times n$ matrix whose entries are elements of K(1, 1). It induces a morphism $n \longrightarrow m$ (note the order), as

$$\left(\lambda_n \prod_{j=1}^n f_{i,j} : n \longrightarrow 1\right)_{1 \le i \le m}$$
(3.28)

Lemma 3.29. Conversely, a morphism $g: n \longrightarrow m$ decomposes as $(g_{i,j})_{1 \le i \le m, 1 \le j \le n}$, where

$$g_{i,j} \coloneqq (\pi_i g)^{\lfloor j \rfloor}. \tag{3.30}$$

Therefore, there is a bijection $M_{m \times n}(\mathsf{K}(1,1)) \cong \mathsf{K}(n,m)$.

Proof. We have, $g = \langle \pi_i g \rangle_{1 \le i \le m}$, and by proposition 3.27, $\pi_i g = \lambda_n \prod_{j=1}^n (\pi_i g)^{[j]}$. The bijection follows from the fact that a morphism $g: n \longrightarrow m$ is uniquely determined by its projections $\pi_i g$, which are themselves uniquely determined by their axes, see proposition 3.27.

In particular, if f is a morphism $m \longrightarrow 1$, then its matrix has a single row whose entries are the axes of f.

Lemma 3.31. If $f = (f_{i,j})_{1 \le i \le m, 1 \le j \le n} : n \longrightarrow m$ and $g = (g_{j,k})_{1 \le j \le n, 1 \le k \le p} : p \longrightarrow n$, then the composite $fg : p \longrightarrow m$ is given by the expected matrix product

$$(fg)_{i,k} = \sum_{j} f_{i,j}g_{j,k}.$$
 (3.32)

Proof. We have

$$(fg)_{i,k} = (\pi_i fg)^{[k]}$$
by lemma 3.29

$$= \pi_i fg(0^{k-1} \times \mathrm{id}_1 \times 0^{p-k})$$
by definition

$$= \pi_i f \langle \pi_j g \rangle_j (0^{k-1} \times \mathrm{id}_1 \times 0^{p-k})$$

$$= \pi_i f \langle \pi_j g(0^{k-1} \times \mathrm{id}_1 \times 0^{p-k}) \rangle_j$$

$$= \pi_i f \langle g_{j,k} \rangle_j$$

$$= \lambda_n \left(\prod_j f_{i,j} \right) \langle g_{j,k} \rangle_j$$

$$= \lambda_n \langle f_{i,j} g_{j,k} \rangle_j$$

$$= \sum_j f_{i,j} g_{j,k}.$$

Lemma 3.33. Let $\sigma \in S_n$ be a permutation. The matrix of the induced morphism $\sigma: n \longrightarrow n$ is given by

$$(\sigma_{i,j})_{1 \le i,j \le n} \coloneqq \begin{cases} \operatorname{id}_1 & \text{if } i = \sigma(j) \\ 0 & \text{otherwise.} \end{cases}$$
(3.34)

Proof. For the time being, let $(s_{i,j})_{1 \le i,j \le n}$ be the matrix defined above, and s be the morphism $n \longrightarrow n$ it induces. By definition,

$$s = \left(\lambda_n \prod_j s_{i,j}\right)_i = \left\langle \pi_{\sigma(i)} \right\rangle_i = \sigma \tag{3.35}$$

The matrix of $id_n \in S_n$ is thus the identity matrix, also denoted by I_n :

$$I_n \coloneqq \begin{pmatrix} \operatorname{id}_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \operatorname{id}_1 \end{pmatrix}.$$
(3.36)

- **Lemma 3.37.** (1) For $f: m \to 1$, $\sigma \in S_m$, and $1 \le i \le m$, we have $(f\sigma)^{[i]} = f^{[\sigma^{-1}(i)]}$.
 - (2) For $f: m \to 1$, $g: n \to 1$, $1 \leq i \leq m$, and $1 \leq j \leq n$, we have $(fg^m)^{[(i-1)n+j]} = f^{[i]}g^{[j]}$. In particular, $f \boxtimes g$ if and only if all the axes of f commute (multiplicatively) with all the axes of g.
- *Proof.* (1) We have

$$f\sigma = (f^{[1]} \cdots f^{[m]})\sigma = (f^{[\sigma^{-1}(1)]} \cdots f^{[\sigma^{-1}(m)]}).$$
(3.38)

(2) We have

$$\begin{split} fg^{m} &= \begin{pmatrix} f^{[1]} & \cdots & f^{[m]} \end{pmatrix} \begin{pmatrix} g & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & g \end{pmatrix} \\ &= \begin{pmatrix} f^{[1]} & \cdots & f^{[m]} \end{pmatrix} \begin{pmatrix} g^{[1]} & \cdots & g^{[n]} & 0 & \cdots & \cdots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & \cdots & \cdots & 0 & g^{[1]} & \cdots & g^{[n]} \end{pmatrix} \\ &= \begin{pmatrix} f^{[1]}g^{[1]} & f^{[1]}g^{[2]} & \cdots & f^{[1]}g^{[n]} & f^{[2]}g^{[1]} & \cdots & f^{[m]}g^{[n]} \end{pmatrix}. \end{split}$$

3.5. Center. Let $\mathsf{K} \in \mathcal{L}$ aw. Its *center* $Z(\mathsf{K})$ is the subtheory of K generated by those morphisms $f \in \mathsf{K}/1$ such that $f \boxtimes \mathsf{K}/1$. We say that K is *commutative* if $Z(\mathsf{K}) = \mathsf{K}$. In other words $f \in Z(\mathsf{K})(m,n)$ if and only if $f : X^m \longrightarrow X^n$ is a morphism of models, for all $X \in \mathsf{K}(\mathsf{Set})$. By lemma 3.3, K is commutative if and only if $\mathsf{K}/1 \boxtimes \mathsf{K}/1$.

Lemma 3.39. Let $\mathsf{K}, \mathsf{L} \in \mathcal{L}$ aw. Then $Z(\mathsf{K}) \otimes Z(\mathsf{L}) \subseteq Z(\mathsf{K} \otimes \mathsf{L})$.

Proof. Let $f \in Z(K)$. Then by definition, $f \boxtimes K/1$ in K, thus the same holds in $K \otimes L$. Further, $f \boxtimes L/1$ in $K \otimes L$. Finally, $f \in Z(K \otimes L)$. The same reasoning applies if $f \in Z(L)$.

Proposition 3.40. Let $\operatorname{id} = \operatorname{id}_{\mathsf{K}(\operatorname{Set})}$ be the identity functor of $\mathsf{K}(\operatorname{Set})$. There is a bijection $Z(\mathsf{K})(m,n) \longrightarrow [\operatorname{id}^m, \operatorname{id}^n]$ which induces an equivalence $Z(\mathsf{K}) \longrightarrow \mathfrak{I}$, where \mathfrak{I} is the full subcategory of $[\mathsf{K}(\operatorname{Set}), \mathsf{K}(\operatorname{Set})]$ spanned by powers of id .

Proof. Since $Z(\mathsf{K})(m,n) = Z(\mathsf{K})(m,1)^n$ and $[\mathrm{id}^m,\mathrm{id}^n] = [\mathrm{id}^m,\mathrm{id}]^n$, it is enough to prove the claim in the case n = 1. Let $f \in Z(\mathsf{K})(m,1)$. For $X \in \mathsf{K}(\mathrm{Set})$, let $\alpha_{f,X} := Xf : X^m \longrightarrow X$. We check that this is a morphism of models using lemma 2.3: for $g: n \longrightarrow 1$

$$\begin{aligned} \alpha_{f,X} \circ (X^m g) &= (Xf)(X^m g) & \text{by definition} \\ &= (Xf)(X(g^m \tau_{m;n})) & \text{by lemma 2.17} \\ &= X(fg^m \tau_{m;n}) \\ &= X(gf^n) & \text{since } f \boxtimes g \\ &= (Xg)(Xf)^n \\ &= (Xg)\alpha_{f,X}^n. \end{aligned}$$

For $F: X \longrightarrow Y$ a morphism of models, we have $F\alpha_{f,X} = F(Xf) = (Yf)F^n$

$$_{f,X} = F(Xf) = (Yf)F^m = \alpha_{f,Y}F^m,$$
 (3.41)

or in other words, the following diagram commutes:

Consequently, the $\alpha_{f,X}$'s assemble into a natural transformation $\alpha_f : \mathrm{id}^m \longrightarrow \mathrm{id}$. Further, the mapping $f \longmapsto \alpha_f$ is injective since $\alpha_{f,K_m} : K_m^m \longrightarrow K_m$ maps id_m to f.

Conversely, let $\beta : \mathrm{id}^m \longrightarrow \mathrm{id}$ be a natural transformation. Let $b \coloneqq \beta_{K_m}(\mathrm{id}_m) : m \longrightarrow 1$. We show that for $X \in \mathsf{K}(\mathrm{Set})$, the morphism β_X is in fact $Xb : X^m \longrightarrow X$. Let $x \in X^m$, and $\tilde{x} : K_m \longrightarrow X$ be the corresponding morphism under the Yoneda lemma. Then by naturality of β , the following square commutes:

$$\begin{array}{cccc}
K_m^m & \xrightarrow{\beta_{K_m}} & K_m \\
\tilde{x}^m & & & \downarrow \tilde{x} \\
X^m & \xrightarrow{\beta_X} & X.
\end{array}$$
(3.43)

Thus,

$$\beta_X(x) = \beta_X \tilde{x}^m(\mathrm{id}_m) = \tilde{x}\beta_{K_m}(\mathrm{id}_m) = \tilde{x}(a) = (Xa)(x).$$
(3.44)

Consequently, $\beta = \alpha_b$, and the map $\alpha : \mathsf{K}(m, 1) \longrightarrow [\mathrm{id}^m, \mathrm{id}]$ is a bijection. \Box

4. Morita theory

Let L be a Lawvere theory. For $k \in \mathbb{N}$, the matrix theory [ARV11, definition 15.4] $\mathsf{L}^{[k]}$ is the Lawvere theory where $\mathsf{L}^{[k]}(m,n) = \mathsf{L}(km,kn)$. The structural morphism $\aleph_0^{\mathrm{op}} \longrightarrow \mathsf{L}^{[k]}$ maps the projection $\pi_i : n \longrightarrow 1$ to $\langle \pi_{k(i-1)+1}, \pi_{k(i-1)+2}, \ldots, \pi_{ki} \rangle : kn \longrightarrow k$.

Let now $u: 1 \longrightarrow 1$ be an idempotent operation of L. It is *pseudoinvertible* if there exists $k \in \mathbb{N}$, $a: 1 \longrightarrow k$ and $b: k \longrightarrow 1$ such that

$$bu^{\kappa}a = \mathrm{id}_1. \tag{4.1}$$

The *idempotent modification* uLu of L is the subcategory of L spanned by those morphisms $f: m \longrightarrow n$ such that $fu^m = f = u^n f$. The identity of m in uLu is u^m , and the *i*-th projection $m \longrightarrow 1$ is $u\pi_i$.

Lemma 4.2. The idempotent modification uLu is generated by morphisms of the form ufu^n , where $f: n \longrightarrow 1$ and $n \in \mathbb{N}$.

Proof. If $g: m \longrightarrow n$ is in uLu, then

$$g = u^n g u^m = u^n \langle \pi_i g \rangle_{1 \le i \le n} u^m = \langle u(\pi_i g) u^m \rangle_{1 \le i \le n}.$$

Two Lawvere theories $K, L \in \mathcal{L}$ aw are *Morita equivalent* [ARV11, definition 15.2], denoted by $K \sim L$, if their categories of models K(Set) and L(Set) are equivalent.

Lemma 4.3. Let $K, K', L, L' \in \mathcal{L}$ aw. If $K \sim K'$ and $L \sim L'$, then $K \otimes L \sim K' \otimes L'$.

Proof. Follows from theorem 3.10 and corollary 3.12.

Proposition 4.4. Two commutative $K, L \in \mathcal{L}$ aw are Morita equivalent if and only if they are isomorphic.

Proof. Surely, if K and L are isomorphic, then they are Morita equivalent. Conversely, by proposition 3.40,

$$\mathsf{K}(m,n) = Z(\mathsf{K})(m,n) = [\mathrm{id}_{\mathsf{K}(\mathrm{Set})}^m, \mathrm{id}_{\mathsf{K}(\mathrm{Set})}^n] \cong [\mathrm{id}_{\mathsf{L}(\mathrm{Set})}^m, \mathrm{id}_{\mathsf{L}(\mathrm{Set})}^n] = \mathsf{L}(m,n).$$
(4.5)

Theorem 4.6 ([ARV11, theorem 15.7]). Let $\mathsf{K}, \mathsf{L} \in \mathcal{L}$ aw. We have $\mathsf{K} \sim \mathsf{L}$ if and only if $\mathsf{K} \simeq u\mathsf{L}^{[k]}u$, for some $k \ge 1$ and u a pseudoinvertible idempotent of the matrix theory $\mathsf{L}^{[k]}$.

5. Stability

A Lawvere theory K is said to be *syntactically stable* at rank $k \in \mathbb{N}$ if the canonical map $i_{\mathsf{K}^{\otimes k}} : \mathsf{K}^{\otimes k} \longrightarrow \mathsf{K}^{\otimes k} \otimes \mathsf{K} = \mathsf{K}^{\otimes k+1}$ is an equivalence of categories. Similarly, K is *semantically stable* at rank k if the forgetful functor $i_{\mathsf{K}^{\otimes k}}^* : \mathsf{K}^{\otimes k+1}(\mathsf{Set}) \longrightarrow \mathsf{K}^{\otimes k}(\mathsf{Set})$ is an equivalence of categories. Of course, if K is syntactically stable at rank k, then it is semantically stable as well. We say that K is syntactically or semantically stable if it is so at rank 1.

Proposition 5.1. If K is commutative and semantically stable, then it is syntactically stable.

Proof. Follows from lemma 3.39 and proposition 4.4. \Box

Proposition 5.2. If K is syntactically stable, then it is commutative.

Proof. Denote by $i_1, i_2 : \mathsf{K} \longrightarrow \mathsf{K} \otimes \mathsf{K}$ the canonical morphisms into the left and right component, respectively, and let $\sigma : \mathsf{K} \otimes \mathsf{K} \longrightarrow \mathsf{K} \otimes \mathsf{K}$ be the symmetry involution, i.e. such that $\sigma i_1 = i_2$ and conversely. Then by assumption, i_1 is an isomorphisms, and thus, so is i_2 . By definition, for $f, g \in \mathsf{K}/1$, we have $i_1(f) \boxtimes i_2(g)$, and applying i_1^{-1} gives $f \boxtimes i_1^{-1}i_2(g)$. Note that $i_1^{-1}i_2 = i_1^{-1}\sigma i_1 = i_2^{-1}i_1$ is an involution. In particular,

$$f \boxtimes i_1^{-1} i_2(i_1^{-1} i_2(g)) = g, \tag{5.3}$$

for all $f, g \in \mathsf{K}/1$.

Unfortunately, the converse of proposition 5.2 does not hold, see e.g. Mag_1 .

6. Conclusion

TODO: Write the conclusion.

References

- [AR94] Jiří Adámek and Jiří Rosický. Locally Presentable and Accessible Categories, volume 189 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1994.
- [ARV11] Jiří Adámek, Jiří Rosický, and E. M. Vitale. Algebraic Theories: A Categorical Introduction to General Algebra. Number 184 in Cambridge Tracts in Mathematics. Cambridge Univ. Press, Cambridge, 2011.
- [Bor94a] Francis Borceux. Handbook of Categorical Algebra. 1, volume 50 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge, 1994.
- [Bor94b] Francis Borceux. Handbook of Categorical Algebra. 2, volume 51 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge, 1994.
- [Bor94c] Francis Borceux. Handbook of Categorical Algebra. 3, volume 52 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge, 1994.
- [BV79] J.M. Boardman and R.M. Vogt. Tensor products of theories, application to infinite loop spaces. Journal of Pure and Applied Algebra, 14(2):117–129, March 1979.
- [BV94] Francis Borceux and Enrico M. Vitale. On the notion of bimodel for functorial semantics. Applied Categorical Structures, 2(3):283–295, 1994.
- [Che20] Eugenia Cheng. Distributive laws for Lawvere theories. Compositionality, 2:1, May 2020.
- [EH62] B. Eckmann and P. J. Hilton. Group-like structures in general categories I multiplications and comultiplications. *Mathematische Annalen*, 145(3):227–255, June 1962.
- [Fre66] P. Freyd. Algebra valued functors in general and tensor products in particular. Colloquium Mathematicum, 14(1):89–106, 1966.
- [Fuj19] Soichiro Fujii. A unified framework for notions of algebraic theory. Theory and Applications of Categories, 34:Paper No. 40, 1246–1316, 2019.
- [HP07] Martin Hyland and John Power. The category theoretic understanding of universal algebra: Lawvere theories and monads. In Computation, Meaning, and Logic: Articles Dedicated to Gordon Plotkin, volume 172 of Electron. Notes Theor. Comput. Sci., pages 437–458. Elsevier Sci. B. V., Amsterdam, 2007.
- [Law04] F. William Lawvere. Functorial semantics of algebraic theories and some algebraic problems in the context of functorial semantics of algebraic theoriesc. *Reprints in Theory* and Applications of Categories, (5):1–121, 2004.
- [LP09] Stephen Lack and John Power. Gabriel-Ulmer duality and Lawvere theories enriched over a general base. Journal of Functional Programming, 19(3-4):265–286, 2009.