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1. Introduction

TODO: Write the introduction

1.1. Prerequisites. Let C be a category with products. Let I be some index
set, and di ∈ C, for i ∈ I. The projection onto the i-th component is denoted by
πi ∶ ∏j dj Ð→ di. If all the di’s are equal to some d ∈ C, we write dI ∶= ∏i∈I di. By
universal property, a collection of morphisms gi ∶ cÐ→ di induces a morphism

⟨gi⟩i∈I ∶ cÐ→∏
i∈I

di. (1.1)

If all the gi’s are identities, then ∆I ∶= ⟨idc⟩i∈I ∶ c Ð→ cI is called a diagonal of c.
We abbreviate ∆I as simply ∆ if no ambiguity arise. If f ∶ bÐ→ c and hi ∶ di Ð→ ei,
then

⟨higif⟩i = (∏
i

hi) ⟨gi⟩i f. (1.2)

Date: 2021 .

1



2 CÉDRIC HO THANH

In particular, ⟨gi⟩i = (∏i gi)∆. A bijection σ ∶ I Ð→ I induces an automorphism
σ ∶= ⟨πσ(i)⟩i∈I ∶ d

I Ð→ dI . (1.3)
We denote by Sn the n-th symmetric group, which is the group of automorphisms
of an n-element set.

2. Lawvere theories

2.1. Definition. For n ∈ N, let [n] be the n-elements set {1,2, . . . , n}. If no ambi-
guity arises, we shall simply denote it by n = [n]. Let ℵ0 be the full subcategory
of Set spanned by sets of the form n. It is a skeleton of Setf , the category of finite
sets.

Clearly, ℵ0 has finite coproducts, given by addition of numbers. Therefore, ℵop0
has finite products, also given by addition of numbers. In particular, all objects of
ℵop0 are iterated products of the object 1.

A Lawvere theory (also called one-storted algebraic theory [ARV11, definition
11.3]) is a category L with finite products, equipped with a functor l ∶ ℵop0 Ð→ L
that is an identity on objects and preserves finite products. In other words, L
is a category with finite products, where all objects are iterated products of a
distinguished object 1. Therefore, the functor l shall remain implicit. A morphism
F ∶ L Ð→ K between Lawvere theories is simply a functor below ℵop0 . Let Law
be the category of Lawvere theories and such morphisms. It has an initial object,
namely ℵop0 itself.

2.2. Models. Let C be a category with finite products. A model of L in C is a
finite product preserving functor X ∶ L Ð→ C. If no ambiguity arise, we write Xn

instead of Xn, X instead of X1 = X1, and if f ∈ L(m,n), we write f ∶ Xm Ð→Xn

instead of Xf . With these notations, a model X is the datum of an object X ∈ C
together with a morphism f ∶ Xn Ð→ X for every morphism f ∈ L(n,1), satisfying
the same relations as L. A morphism of models α ∶ X Ð→ Y is simply a natural
transformation. Let L(C) be the category of models of L in C and UL ∶ L(C) Ð→ C

be the forgetful functor. It maps a model X to X =X1, and α ∶X Ð→ Y to α = α1.

Lemma 2.1. If α ∶ X Ð→ Y is a morphism of models, then αn ∶ Xn Ð→ Y n is
simply (α1)n.

Proof. Consider the projection πi ∶ nÐ→ 1 in L. Since α is a natural transformation,
the following square commutes:

Xn Y n

X Y.

αn

πi πi

α1

(2.2)

Since this holds for all 1 ≤ i ≤ n, we conclude that αn = (α1)n. □
Lemma 2.3. Let X,Y ∈ L(C) and β ∶X Ð→ Y be a morphism in C. Then β extends
as a morphism of models X Ð→ Y if and only if for all n ∈ N and f ∈ L(n,1), the
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following square commutes

Xn Y n

X Y.

βn

f f

β

(2.4)

Proof. Necessity is clear. We now prove that the condition is sufficient. Note that
a morphism g ∶ n Ð→ m in L can be decomposed as g = ⟨πig⟩1≤i≤m, and that each
πig is a morphism nÐ→ 1. By assumption, πigβ

n = βπig, thus
gβn = ⟨πigβ

n⟩1≤i≤m = ⟨βπig⟩1≤i≤m = βg. (2.5)
□

Thanks to lemmas 2.1 and 2.3, we can write the n-th component of α ∶X Ð→ Y
simply as αn ∶ Xn Ð→ Y n. Consider the case C = Set, and let n ∈ N. The n-th
representable model of L [ARV11, remark 1.12] is Ln ∶= L(n,−) ∶ LÐ→ Set.

Lemma 2.6 (Yoneda lemma). For X ∈ L(Set) there is an natural isomorphism (of
sets)

Xn ≅ L(Set)(Ln,X). (2.7)
More precisely, it maps an element x ∈ Xn to the unique morphism x̃ ∶ Ln Ð→ X
such that x̃n(idn) = x.

2.3. Products of models. By [AR94, theorem 1.46 and corollary 1.52], L(Set) is a
finitely locally presentable category, and in particular, it has all limits and colimits.
The same result cannot be expected to hold for a general ground category C with
finite products, but as we will see in lemma 2.11, L(C) still has finite products.

For integers m,n > 0, let τn;m ∈ Smn be the shuffle permutation, i.e. the permu-
tation such that for all 1 ≤ i ≤m and 1 ≤ j ≤ n, we have

τn;m((j − 1)n + i) = (i − 1)m + j. (2.8)
In other words, τn;m “rearranges m tuples of n elements into n tuples of m elements”.
If n or m is 0, then by convention, let τn;m be the identity on the empty set. We
consider τn;m as a morphism mn Ð→ mn of ℵop0 , and therefore as a morphism in
any Lawvere theory.

If c1, . . . , cn ∈ C and m ∈ N, then there is an isomorphism

τ = τc1,...,cn;m ∶ (∏
i

ci)
m

Ð→∏
i

cmi (2.9)

induced by τn;m, which again, rearranges m tuples of n elements into n tuples
of m elements. Explicitly, if pk ∶ (∏i ci)

m Ð→ cl is the projection into the k-th
component, where 1 ≤ k ≤ mn, 1 ≤ l ≤ n, and l ≡ k mod n, then τ is the universal
morphism

τ = ⟨pτn;m(k)⟩1≤k≤mn
. (2.10)

If all the ci’s are equal to some object c, then we write τc;n;m instead of τc,...,c;m.

Lemma 2.11 ([ARV11, proposition 1.21]). The category L(C) has finite products,
given as follows:

(1) if the terminal object of C is 1, then the terminal model is the constant
functor at 1;
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(2) if X,Y ∈ L(C), then X × Y is the functor
X × Y ∶ LÐ→ C

nz→ (X × Y )n n ∈ N
f z→ τ−1X,Y ;q(f × f)τX,Y ;p f ∈ L(p, q).

In details, (X × Y )f is the composite

(X × Y )p
τX,Y ;pÐÐÐ→Xp × Y p f×fÐÐ→Xq × Y q

τ−1X,Y ;qÐÐÐ→ (X × Y )q. (2.12)

Proof. The model described in point (1) is clearly terminal. Consider X × Y as
defined in point (2), and define πX,n as the composite

(X × Y )n
τX,Y ;nÐÐÐÐ→Xn × Y n πXn

ÐÐ→Xn. (2.13)
Take f ∈ L(p, q), and consider

(X × Y )p Xp × Y p Xp

(X × Y )q Xq × Y q Xq.

τX,Y ;p

(X×Y )f

πX,p

πXp

f×f f

τX,Y ;q

πX,q

πXq

(2.14)

Both inner squares commute by definition, thus so does the outer one. In other
words, πX,p’s jointly define a natural transformation πX ∶ X × Y Ð→ X. Similarly,
we define πY ∶ X × Y Ð→ Y . We now check that X

πX←ÐÐ X × Y πYÐ→ is a limit cone.
For X

α←Ð Z
βÐ→ Y another cone, let γn be the following composite

Zn ⟨αn,βn⟩ÐÐÐÐ→Xn × Y n
τ−1X,Y ;nÐÐÐÐ→ (X × Y )n. (2.15)

Akin to (2.14), it is easy to check that the γn’s jointly define a morphism Z Ð→
X×Y , and that furthermore, α = πXγ and β = πY γ. If γ′ is another such morphism,
then necessarily

τX,Y ;2γ
′
n = ⟨αn, βn⟩ = τX,Y ;2γ, (2.16)

and since τX,Y ;2 is an isomorphism, γ′n = γn. Finally, X × Y defined above is the
product of X and Y . □
Lemma 2.17. If X ∈ L(C), g ∈ L(n,1), and m ∈ N, then

Xmg = (Xg)mτX;m;n =X (gmτm;n) . (2.18)

Proof. The second equality follows from the fact that X preserves finite products.
For the first one, we proceed by induction. The cases m = 0,1 hold trivially, and
m = 2 holds by definition of the product in L(C). Thus, assume that m ≥ 3. We
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have
Xmg = (X ×Xm−1)g

= τ−1X,Xm−1;1(Xg ×Xm−1g)τX,Xm−1;1

= (Xg ×Xm−1g)τX,Xm−1;1 τX,Xm−1;1 = id
= (Xg × (Xg)m−1τX;m−1;n)τX,Xm−1;1 by induction
= (Xg)m(idX ×τX;m−1;n)τX,Xm−1;1

= (Xg)mτX;m;n.

□

3. Tensor product

3.1. Commutativity. Let K,L ∈ Law, and C be a category with finite products.
As we saw in lemma 2.11, L(C) has finite products, and therefore, we may consider
the category of K-models in L(C), i.e. K(L(C)). As we will see in this section, the
latter can be seen as the category of models in C.

Let f ∈ L(n,1) and g ∈ L(m,1). We say that f commutes with g, denoted by
f ⊠ g, if the following equality is satisfied:

fgn = gfmτm;n. (3.1)
More generally, if c ∈ C, f ∈ C(cn,1) and g ∈ C(cm,1), then we say that f commutes
with g if fgn = gfmτc;m;n, i.e. if the following diagram commutes:

cmn cn c

cnm cm c.

gn

τc;m;n

f

fm g

(3.2)

Note that since τ−1m;n = τn;m, the commutativity relation ⊠ is symmetric.
To simplify notations, if A,B ⊆ L/1 are sets of morphisms with codomain 1, then

we write A⊠B to signify that every morphism in A commutes with every morphism
of B. Let L∣A be the smallest subtheory of L containing A. In particular, L∣A/1 is
the smallest subset of L/1 such that

(1) A ⊆ L∣A/1;
(2) the projection πi ∶ nÐ→ 1 is in L∣A/1, for all n ∈ N and 1 ≤ i ≤ n;
(3) if g, f1, . . . , fn ∈ L∣A/1, then g∏i fi ∈ L∣A/1 and g ⟨fi⟩ ∈ L∣A/1.

If L = L∣A, then we say that A generates L. Trivially L/1 generates L.

Lemma 3.3. Let A,B ⊆ L/1. If A ⊠B, then (L∣A/1) ⊠ (L∣B/1).

Proof. By symmetry of ⊠, it is enough to show that A⊠(L∣B/1). The rest is routine
verifications. □
3.2. Tensor product. For L,K ∈ Law, consider the theory K∐ℵop0 L given by the
categorical pushout

ℵop0 K

L K∐ℵop0 L.
⌜

k

l (3.4)
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It contains all the morphisms of K and L, but is quotiented in such a way that only
one copy of ℵop0 is present. In particular, K∐ℵop0 L is still a Lawvere theory. Letcheck
K⊗ L, the tensor product (also called Kronecker product) of K and L [Fre66] be the
following quotient:

K⊗ L ∶=
K∐ℵop0 L

fgn ∼ gfmτm;n, f ∈ K(n,1), g ∈ L(m,1)
. (3.5)

Denote by iK ∶ K Ð→ K ⊗ L the natural map (which is not necessarily faithful!),
and likewise for L. Since τ−1m;n = τn;m, we have fgn = gfmτm;n if and only if
gfm ∼ fgnτn;m, which implies that the tensor product ⊗ is commutative.
Proposition 3.6. The initial theory ℵop0 is a neutral element for the tensor product.
Proof. Take K ∈ Law. Then K∐ℵop0 ℵ

op
0 = K, thus

K⊗ℵop0 =
K

fgn ∼ gfmτm;n, f ∈ K(n,1), g ∈ ℵop0 (m,1)

= K

fπn
i ∼ πifmτm;n, f ∈ K(n,1), πi ∶mÐ→ 1,1 ≤ i ≤m

.

However, the relation fπn
i = πif

mτm;n is already satisfied in K (and indeed, in any
Lawvere theory), thus K⊗ℵop0 = ℵ

op
0 ⊗K = K. □

Lemma 3.7. Let X ∈ K(L(C)).
(1) For d ∈ homℵop0 we have (X1)d = (Xd)1.
(2) For f ∈ K/1 and g ∈ L/1 we have (X1)g ⊠ (Xf)1.

Proof. (1) Since X and X1 are models of Lawvere theories, they preserve finite
products.

(2) By naturality of Xf , the following diagram commutes

(Xm)n (X1)n

(Xm)1 (X1)1.

(Xf)n

(Xm)g (X1)g
(Xf)1

(3.8)

By lemma 2.11, (Xm)g = (X1)mg = ((X1)g)mτX1;m;n, thus
(Xf)1((X1)g)mτ(X1)1;m;n = (X1)g(Xf)n = ((X1)g)(Xf)n1 , (3.9)

which is the desired relation. □
Theorem 3.10. There is an equivalence K(L(C)) ≃ K⊗ L(C).
Proof. Informally, the central observation is that the relations fgn = gfmτm;n rang-
ing over g encodes the fact that f induces a natural transformation between L-
models in C, i.e. a morphism in L(C).

Let X ∈ K(L(C)). By lemma 3.7, the following functor is a well-defined model of
K⊗ L:

X♭ ∶ K⊗ LÐ→ C

nz→ (X1)n n ∈ N
f z→ (Xf)1 f ∈ homK

g z→ (X1)g g ∈ homL.
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This defines a functor (−)♭ ∶ K(L(C)) Ð→ K ⊗ L(C) mapping a morphism α to
α♭ ∶= α1. Conversely, let Y ∈ K ⊗ L(C). For f ∈ L(m,m′) and g ∈ L(n,1), the
following square commutes

Y mn Y m′n

Y m Y m′

(Y f)n

Y mg Y m′g

Y f

(3.11)

since in K ⊗ L we have πif ⊠ g for all 1 ≤ i ≤ m. Therefore, by lemma 2.3, the
(Y f)n’s jointly define a morphism (Y f)● ∶ Y miK Ð→ Y m′iK. This enables the
following definition

Y ♯ ∶ KÐ→ L(C)
nz→ Y niK n ∈ N
f z→ (Y f)● f ∈ homK,

from which we derive a functor (−)♯ ∶ K⊗L(C)Ð→ K(L(C)) mapping a morphism β
to (β1)●. Finally, it is routine verification to show that (−)♭ and (−)♯ are mutually
inverse equivalences of categories. □
Corollary 3.12. We have K(L(C)) ≃ L(K(C)).

3.3. Derived theories. find better term
for thatLet Mon be the theory of monoids. It is generated by a constant 0 ∶ 0 Ð→ 1, a

binary operation λ = λ2 ∶ 2Ð→ 1, and the following relations:
λ(id1 ×0) = id1 = λ(0 × id1), λ(λ × id1) = λ(id1 ×λ), (3.13)

standing for unitality and associativity, respectively. Define the n-ary multiplication
λn as follows: λ0 ∶= 0, λ1 ∶= id1, and for n ≥ 2, λn+1 ∶= λ(λn × id1). Let cMon be
the theory of commutative monoids, generated like Mon but with the following
additional commutativity axiom:

λ = λ(1 2). (3.14)
Finally, the theory Ab of abelian groups extends cMon with a morphism i ∶ 1Ð→ 1
and the following invertibility axiom

λ(i × id1) = 0 = λ(id1 ×i). (3.15)

Proposition 3.16 (Eckmann–Hilton argument). Let K be a Lawvere theory, n ≥ 2,
f, g ∶ n Ð→ 1, and 0 ∶ 0 Ð→ 1. Assume that 0 is a neutral element for f and g, i.e.
f(0i−1 × id1 ×0n−i) = id1, for all 1 ≤ i ≤ n, and likewise for g. If f ⊠ g, then f = g
and for all σ ∈ Sn, f = fσ.

Proof. Take σ ∈ Sn, and define

xi,j ∶=
⎧⎪⎪⎨⎪⎪⎩

id1 if i = σ(j)
0 otherwise.

(3.17)
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We have
f = f∏

i

xi,σ(i)

= f∏
i

g∏
j

xi,j since 0 neutral for g

= fgn∏
i,j

xi,j

= gfnτn;n∏
i,j

xi,j since f ⊠ g

= gfn ⎛
⎝∏i,j

xj,i

⎞
⎠
τn;n

= g
⎛
⎝∏i

f∏
j

xj,i

⎞
⎠
τn;n since 0 neutral for f

= g (∏
i

xσ(i),i) τn;n

= gσ
since τn;n((i− 1)n+ σ(i)) = (σ(i)− 1)n+ i. Taking σ = idn we find f = g. Then, for
a general σ, we have f = gσ = fσ. □
Proposition 3.18 (Classical Eckmann–Hilton argument [EH62]). For all n ≥ 2,
we have cMon =Mon⊗n. In particular, cMon = cMon⊗ cMon.

Proof. In Mon ⊗Mon, denote by 0 and λ the operation from the left instance of
Mon, while 0′ and λ′ are those from the right instance. Since 0⊠0′, we immediately
conclude that 0 = 0′. Then, 0 is neutral for both λ and λ′, and by definition,
λ ⊠ λ′. Thus, by proposition 3.16, λ = λ′ and λ is commutative. In other words,
cMon =Mon⊗Mon. Similarly, cMon = cMon⊗Mon. □

Let K,L ∈ Law. We say that K is a simple L-theory if it can be decomposed as
K = K′ ⊗ L, for some K′ ∈ Law. It is an L-theory if it is the quotient of a simple
L-theory.The terminology

isn’t great, as it
suggests enriche-
ment.

Let K be an Mon-theory, i.e. a quotient of a theory of the form K′ ⊗Mon. The
set K(1,1) has a semiring structure, where multiplication is given by composition,
and where addition is defined as

x + y ∶= λ ⟨x, y⟩ (3.19)
for x, y ∶ 1Ð→ 1. We denote this semiring by ε1K. It is easy to check that the n-ary
sum of x1, . . . , xn ∶ 1Ð→ 1 is

∑
i

xi = λn ⟨xi⟩i . (3.20)

Proposition 3.21. Ab-theories are exactly of the form ModR, where R is a com-
mutative ring.probably not the

best place for it

probably simi-
lar results for
Mon- and cMon-
theories.

Proof. If K is an Ab-theory, then it is easy to see that K = ModR, where R ∶= ε1K.
□

Lemma 3.22. Let A,B ⊆ K/1 be such that
(1) A ∪B generates K;
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(2) A ⊠B.
Then K is a quotient of K∣A ⊗K∣B.

Proof. Since A ⊠B in K, the natural functors K∣A Ð→ K and K∣B Ð→ K extend to
a functor F ∶ K∣A ⊗K∣B Ð→ K. Since A ∪B generates K, F is full. □
Proposition 3.23. Let K,L ∈ Law, where K is commutative. Then L is a K-theory
if and only if it there exists a morphism F ∶ KÐ→ L such that F (K/1) ⊠ L/1 .

Proof. (1) (Ô⇒ ) Assume that L is a K-theory, i.e. obtained as a quotient of
a simple K-theory, say L′ = L′′ ⊗K. Let F be the composite

KÐ→ L′′ ⊗KÐ→ L. (3.24)
Let A ∶= K/1 and B ∶= L′′/1. Then by definition of the tensor product, in
L′, we have A ⊠B. Furthermore, by commutativity, in K we have A ⊠ A.
Thus, in L′, we have A ⊠A ∪B. Since L′ is generated by A ∪B, it follows
from lemma 3.3 that A ⊠ L′/1. Finally, F (K/1) = F (A) ⊠ F (L′/1) = L/1.

(2) ( ⇐Ô ) Note that A ∶= F (K/1) and B ∶= L/1 satisfy the requirements of
lemma 3.22. □

Corollary 3.25. A theory K is a cMon-theory if and only if it contains cMon and
{0, λ} ⊠K/1.

Proof. By the Eckmann–Hilton argument (proposition 3.18), cMon is commutative. To be precise, we
need to invoke
proposition 5.2

Apply proposition 3.23. □
Assume that K is a Mon-theory, and let f ∈ K(n,1). For 1 ≤ i ≤ n, the i-th axis

f [i] of f [BV79] is defined as
f [i] ∶= f(0i−1 × id1 ×0n−i). (3.26)

Proposition 3.27. We have f = λn∏n
i=1 f

[i]. Further, the f [i]’s are unique for
this property.

Proof. We have

f = f
n

∏
i=1

λn(0i−1 × id1 ×0n−i)

= fλn
n

n

∏
i=1
(0i−1 × id1 ×0n−i)

= λnf
nτn;n

n

∏
i=1
(0i−1 × id1 ×0n−i) since f ⊠ λn

= λnf
n

n

∏
i=1
(0i−1 × id1 ×0n−i)

= λn

n

∏
i=1

f(0i−1 × id1 ×0n−i)

= λn

n

∏
i=1

f [i].
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If f = λn∏n
i=1 fi, for some f1, . . . , fn ∶ 1Ð→ 1, then
f [i] = f(0i−1 × id1 ×0n−i)

=
⎛
⎝
λn

n

∏
j=1

fj
⎞
⎠
(0i−1 × id1 ×0n−i)

= λn

⎛
⎝
⎛
⎝

i−1
∏
j=1

fj0
⎞
⎠
× fi ×

⎛
⎝

n

∏
j=i+1

fj0
⎞
⎠
⎞
⎠

= λn(0i−1 × fi × 0n−i) since fj ⊠ 0
= fi.

□
3.4. Matrix calculus. Let K be a Mon-theory. Let f = (fi,j)1≤i≤m,1≤j≤n be a m×n
matrix whose entries are elements of K(1,1). It induces a morphism nÐ→m (note
the order), as

⟨λn

n

∏
j=1

fi,j ∶ nÐ→ 1⟩
1≤i≤m

(3.28)

Lemma 3.29. Conversely, a morphism g ∶ nÐ→m decomposes as (gi,j)1≤i≤m,1≤j≤n,
where

gi,j ∶= (πig)[j]. (3.30)
Therefore, there is a bijection Mm×n(K(1,1)) ≅ K(n,m).
Proof. We have, g = ⟨πig⟩1≤i≤m, and by proposition 3.27, πig = λn∏n

j=1(πig)[j]. The
bijection follows from the fact that a morphism g ∶ nÐ→m is uniquely determined
by its projections πig, which are themselves uniquely determined by their axes, see
proposition 3.27. □

In particular, if f is a morphism mÐ→ 1, then its matrix has a single row whose
entries are the axes of f .
Lemma 3.31. If f = (fi,j)1≤i≤m,1≤j≤n ∶ n Ð→m and g = (gj,k)1≤j≤n,1≤k≤p ∶ p Ð→ n,
then the composite fg ∶ pÐ→m is given by the expected matrix product

(fg)i,k =∑
j

fi,jgj,k. (3.32)

Proof. We have
(fg)i,k = (πifg)[k] by lemma 3.29

= πifg(0k−1 × id1 ×0p−k) by definition
= πif ⟨πjg⟩j (0

k−1 × id1 ×0p−k)

= πif ⟨πjg(0k−1 × id1 ×0p−k)⟩j
= πif ⟨gj,k⟩j

= λn

⎛
⎝∏j

fi,j
⎞
⎠
⟨gj,k⟩j

= λn ⟨fi,jgj,k⟩j
=∑

j

fi,jgj,k.
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□
Lemma 3.33. Let σ ∈ Sn be a permutation. The matrix of the induced morphism
σ ∶ nÐ→ n is given by

(σi,j)1≤i,j≤n ∶=
⎧⎪⎪⎨⎪⎪⎩

id1 if i = σ(j)
0 otherwise.

(3.34)

Proof. For the time being, let (si,j)1≤i,j≤n be the matrix defined above, and s be
the morphism nÐ→ n it induces. By definition,

s = ⟨λn∏
j

si,j⟩
i

= ⟨πσ(i)⟩i = σ (3.35)

□
The matrix of idn ∈ Sn is thus the identity matrix, also denoted by In:

In ∶=
⎛
⎜
⎝

id1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ id1

⎞
⎟
⎠
. (3.36)

Lemma 3.37. (1) For f ∶ m Ð→ 1, σ ∈ Sm, and 1 ≤ i ≤ m, we have (fσ)[i] =
f [σ

−1(i)].
(2) For f ∶ m Ð→ 1, g ∶ n Ð→ 1, 1 ≤ i ≤ m, and 1 ≤ j ≤ n, we have
(fgm)[(i−1)n+j] = f [i]g[j]. In particular, f ⊠ g if and only if all the axes of
f commute (multiplicatively) with all the axes of g.

Proof. (1) We have
fσ = (f [1] ⋯ f [m])σ = (f [σ

−1(1)] ⋯ f [σ
−1(m)]) . (3.38)

(2) We have

fgm = (f [1] ⋯ f [m])
⎛
⎜
⎝

g ⋯ 0
⋮ ⋱ ⋮
0 ⋯ g

⎞
⎟
⎠

= (f [1] ⋯ f [m])
⎛
⎜
⎝

g[1] ⋯ g[n] 0 ⋯ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ⋯ 0 g[1] ⋯ g[n]

⎞
⎟
⎠

= (f [1]g[1] f [1]g[2] ⋯ f [1]g[n] f [2]g[1] ⋯ f [m]g[n]) .
□

3.5. Center. Let K ∈ Law. Its center Z(K) is the subtheory of K generated by
those morphisms f ∈ K/1 such that f ⊠ K/1. We say that K is commutative if
Z(K) = K. In other words f ∈ Z(K)(m,n) if and only if f ∶ Xm Ð→ Xn is a
morphism of models, for all X ∈ K(Set). By lemma 3.3, K is commutative if and
only if K/1 ⊠K/1.

Lemma 3.39. Let K,L ∈ Law. Then Z(K)⊗Z(L) ⊆ Z(K⊗ L).

Proof. Let f ∈ Z(K). Then by definition, f ⊠K/1 in K, thus the same holds in K⊗L.
Further, f ⊠ L/1 in K ⊗ L. Finally, f ∈ Z(K ⊗ L). The same reasoning applies if
f ∈ Z(L). □
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Proposition 3.40. Let id = idK(Set) be the identity functor of K(Set). There is
a bijection Z(K)(m,n) Ð→ [idm, idn] which induces an equivalence Z(K) Ð→ I,
where I is the full subcategory of [K(Set),K(Set)] spanned by powers of id.

Proof. Since Z(K)(m,n) = Z(K)(m,1)n and [idm, idn] = [idm, id]n, it is enough
to prove the claim in the case n = 1. Let f ∈ Z(K)(m,1). For X ∈ K(Set), let
αf,X ∶= Xf ∶ Xm Ð→ X. We check that this is a morphism of models using
lemma 2.3: for g ∶ nÐ→ 1

αf,X ○ (Xmg) = (Xf)(Xmg) by definition
= (Xf)(X(gmτm;n)) by lemma 2.17
=X(fgmτm;n)
=X(gfn) since f ⊠ g
= (Xg)(Xf)n

= (Xg)αn
f,X .

For F ∶X Ð→ Y a morphism of models, we have
Fαf,X = F (Xf) = (Y f)Fm = αf,Y F

m, (3.41)
or in other words, the following diagram commutes:

Xm X

Y m Y.

αf,X

Fm F

αf,Y

(3.42)

Consequently, the αf,X ’s assemble into a natural transformation αf ∶ idm Ð→ id.
Further, the mapping f z→ αf is injective since αf,Km ∶ Km

m Ð→ Km maps idm to
f .

Conversely, let β ∶ idm Ð→ id be a natural transformation. Let b ∶= βKm(idm) ∶
mÐ→ 1. We show that for X ∈ K(Set), the morphism βX is in fact Xb ∶Xm Ð→X.
Let x ∈ Xm, and x̃ ∶ Km Ð→ X be the corresponding morphism under the Yoneda
lemma. Then by naturality of β, the following square commutes:

Km
m Km

Xm X.

βKm

x̃m x̃

βX

(3.43)

Thus,
βX(x) = βX x̃m(idm) = x̃βKm(idm) = x̃(a) = (Xa)(x). (3.44)

Consequently, β = αb, and the map α ∶ K(m,1)Ð→ [idm, id] is a bijection. □

4. Morita theory

Let L be a Lawvere theory. For k ∈ N, the matrix theory [ARV11, definition 15.4]
L[k] is the Lawvere theory where L[k](m,n) = L(km,kn). The structural morphism
ℵop0 Ð→ L[k] maps the projection πi ∶ n Ð→ 1 to ⟨πk(i−1)+1, πk(i−1)+2, . . . , πki⟩ ∶
knÐ→ k.
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Let now u ∶ 1 Ð→ 1 be an idempotent operation of L. It is pseudoinvertible if
there exists k ∈ N, a ∶ 1Ð→ k and b ∶ k Ð→ 1 such that

buka = id1 . (4.1)
The idempotent modification uLu of L is the subcategory of L spanned by those
morphisms f ∶ m Ð→ n such that fum = f = unf . The identity of m in uLu is um,
and the i-th projection mÐ→ 1 is uπi.

Lemma 4.2. The idempotent modification uLu is generated by morphisms of the
form ufun, where f ∶ nÐ→ 1 and n ∈ N.

Proof. If g ∶mÐ→ n is in uLu, then
g = ungum = un ⟨πig⟩1≤i≤n u

m = ⟨u(πig)um⟩1≤i≤n .
□

Two Lawvere theories K,L ∈ Law are Morita equivalent [ARV11, definition 15.2],
denoted by K ∼ L, if their categories of models K(Set) and L(Set) are equivalent.

Lemma 4.3. Let K,K′,L,L′ ∈ Law. If K ∼ K′ and L ∼ L′, then K⊗ L ∼ K′ ⊗ L′.

Proof. Follows from theorem 3.10 and corollary 3.12. □
Proposition 4.4. Two commutative K,L ∈ Law are Morita equivalent if and only
if they are isomorphic.

Proof. Surely, if K and L are isomorphic, then they are Morita equivalent. Con-
versely, by proposition 3.40,

K(m,n) = Z(K)(m,n) = [idmK(Set), id
n
K(Set)] ≅ [id

m
L(Set), id

n
L(Set)] = L(m,n). (4.5)

□
Theorem 4.6 ([ARV11, theorem 15.7]). Let K,L ∈ Law. We have K ∼ L if and
only if K ≃ uL[k]u, for some k ≥ 1 and u a pseudoinvertible idempotent of the matrix
theory L[k].

5. Stability

A Lawvere theory K is said to be syntactically stable at rank k ∈ N if the canonical
map iK⊗k ∶ K⊗k Ð→ K⊗k ⊗K = K⊗k+1 is an equivalence of categories. Similarly, K is
semantically stable at rank k if the forgetful functor i∗K⊗k ∶ K

⊗k+1(Set)Ð→ K⊗k(Set)
is an equivalence of categories. Of course, if K is syntactically stable at rank k,
then it is semantically stable as well. We say that K is syntactically or semantically
stable if it is so at rank 1.

Proposition 5.1. If K is commutative and semantically stable, then it is syntac-
tically stable.

Proof. Follows from lemma 3.39 and proposition 4.4. □
Proposition 5.2. If K is syntactically stable, then it is commutative.
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Proof. Denote by i1, i2 ∶ KÐ→ K⊗K the canonical morphisms into the left and right
component, respectively, and let σ ∶ K⊗KÐ→ K⊗K be the symmetry involution, i.e.
such that σi1 = i2 and conversely. Then by assumption, i1 is an isomorphisms, and
thus, so is i2. By definition, for f, g ∈ K/1, we have i1(f) ⊠ i2(g), and applying i−11
gives f ⊠ i−11 i2(g). Note that i−11 i2 = i−11 σi1 = i−12 i1 is an involution. In particular,

f ⊠ i−11 i2(i−11 i2(g)) = g, (5.3)
for all f, g ∈ K/1. □

Unfortunately, the converse of proposition 5.2 does not hold, see e.g. Mag1.

6. Conclusion

TODO: Write the conclusion.
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