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Abstract

We investigate the potential of GPT-4 [52] to perform Neural Architecture Search
(NAS)—the task of designing effective neural architectures. Our proposed ap-
proach, GPT-4 Enhanced Neural archltectUre Search (GENIUS), leverages the
generative capabilities of GPT-4 as a black-box optimiser to quickly navigate the
architecture search space, pinpoint promising candidates, and iteratively refine
these candidates to improve performance. We assess GENIUS across several bench-
‘marks, ing it with existing f-th AS i to illustrate its
effectiveness. Rather than targeting state-of-the-art performance, our objective is
to highlight GPT-4’s potential to assist research on a challenging technical problem
through a simple prompting scheme that requires relatively limited domain exper-
tise.!. More broadly, we believe our preliminary results point to future research that
harnesses general purpose language models for diverse optimisation tasks. We also
‘highlight important limitations to our study, and note implications for Al safety.

1 Introduction

Recent years have witnessed a string of high-profile scientific breakthroughs by applying deep neural
networks to problems spanning domains such as protein folding [38], exoplanet detection [39] and
drug discovery [61]. To date, however, successful applications of Al have been marked by the
effective use of domain expertise to guide the design of the system, training data and development
methodology.

The recent release of GPT-4 represents a milestone in the development of “general purpose” systems
that exhibit a broad range of capabilities. While the full extent of these capabilities remains unknown,
preliminary studies and simulated human examinations indicate that the model’s knowledge spans
‘many scientific domains [52, 6]. It is therefore of interest to consider the potential for GPT-4 to serve
as a general-purpose research tool that substantially reduces the need for domain expertise prevalent
in previous breakthroughs.

In this work, we investigate the feasibility of using GPT-4 without domain-specific fine-tuning to assist
with a research task that has received considerable attention in the machine learning community: deep
neural network design. Deep neural networks have proven effective on a diverse array of language
and perception tasks, spanning domains such as question answering [56], object recognition [16, 40]
and object detection [19, 46]. In the quest to improve performance, novel neural architecture designs,
exemplified by proposals such as ResNets [23] and Transformers [71], have attained substantial
gains in C there has been signi interest in i i

that yield further improvements to neural network architectures. In particular, Neural Architecture

!Code available at hitps://g ng/GENIUS.

ub.com/mingk:
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In a nutshell

 What is the best neural network architecture for a given task?

e Usually an expensive search
* Grid search, evolutionary strategy, Bayesian optimization, Hyperband

» Differentiable Architecture Search (DARTS) arXiv:1806.09055
» EfficientNAS arXiv:1807.06906

* This paper uses GPT-4 as a black-box optimizer in a query-feedback
loop



Optimization loop

Please suggest a
architecture based on the

following setting ...

Problem Encoding

T>0

This models achieves

{xx}%, please suggest a

GPT-4

Layerl: Conv2d(k=1),
Layer2: Conv2d(k=3),
Layer3: Conv2d(k=3),
Layer4: Conv2d(k=7),

LayerN: Conv2d(k=3)

Model Config

—— < / > E—— Model Accuracy

Python Program

better one ...

Iterative Prompt

Provide the accuracy as feedback to the iterative prompt



“Lego” benchmarks

* NAS-Bench-Macro

* Contains the performance of various
networks on CIFAR-10

e Each network has the same overall
structure but some blocks vary

* Search space: 3% = 6561 possibilities
* Channel-Bench-Macro
* Same idea, 47 = 16348 possibilities

Table 6. Macro structure of search space on NAS-Bench-Macro.

n input block channel | stride
1| 32x32x%x3 3 X 3 conv 32 1
2 | 32 x 32 x 32 | Choice Block 64 2
3|16 x 16 x 64 | Choice Block 128 2
3| 8x8x128 Choice Block 256 2
1| 4x4x256 1 x 1 conv 1280 1
1 | 4x4x1280 | global avgpool - -
1 1280 FC 10 -
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NAS-Bench-201

* Focus on designing (rather
than choosing) cells via
their computation graph

e Search space: 5° = 15625
possibilities

* Good results but beaten by
state-of-the-art (DARTS)

architecture o)
- i lock residual block| lobal
image |+ conv 11/x N residual b x N X N &

. x] (stride=2) e (stride=2) - avg. poolj

4 cell 5, cell —> zeroize )
‘/.\. .] _______ % o : " .} skip-connect
= — 1Xx1 conv
cell . cell 3%3 conv
"/'\% o} ------- E/°\ S o} 3%3 avg pool
\_ e predefined operation set )

Method CIFARI10 CIFAR100 ImageNet16-120
Validation Test Validation Test Validation Test
DARTS [47] 39.77+£0.00 54.30+0.00 38.57+0.00 15.61+0.00 18.87+0.00 16.32+0.00
DSNAS [32] 89.66+0.29 93.08+0.13 30.87+16.40 31.01+16.38 40.61+0.09 41.07+0.09
PC-DARTS [77] 89.96+0.15 93.41+0.30 67.12+0.39 67.48+0.89 40.83+0.08 41.31+0.22
SNAS [76] 90.10£1.04 92.77+0.83 69.69+2.39 69.34+1.98 42.84+1.79 43.16+2.64
iDARTS [82] 89.86+0.60 93.58+0.32 70.57+0.24 70.83+0.48 40.38+0.59 40.89+0.68
GDAS [17] 89.89+0.08 93.61+0.09 71.34+0.04 70.70+£0.30 41.59+1.33 41.71+0.98
DRNAS [10] 91.5540.00 94.36+0.00 73.49+0.00 73.51+0.00 46.37+0.00 46.34+0.00
B-DARTS [78]  91.55+0.00 94.36+0.00 73.49+0.00 73.51+£0.00 46.37+0.00 46.34+0.00
A-DARTS [51] 91.55+0.00 94.36+0.00 73.49+0.00 73.51+0.00 46.37+0.00 46.34+0.00
GENIUS (Ours) 91.0740.20 93.79+0.09 70.96+0.33 70.91+0.72 45.294+0.81 44.96+1.02




Large-scale experiments

Lego-type benchmark on
ImageNet with more layer
options

2

Search space: 73°
2.2 X 102 possibilities

FLOPs constraints

Marginally better results, but
significantly faster

FLOPs Params Top-1 Top-5 Search Cost
Method (M) M) (%) (%) (GPU Days)
MobileNetV2 [58] 300 34 72.0 91.0 Human Designed
AngleNet [33] 325 - 74.2 - Unkown
Proxyless-R [7] 320 4.0 74.6 922 15
MnasNet-A2 [67] 340 4.8 75.6 92.7 288t
BetaNet-A [20] 333 4.1 75.9 92.8 7
SPOS [22] 328 - 76.2 - 12
SCARLET-B [12] 329 6.5 76.3 93.0 22
ST-NAS-A [21] 326 5.2 76.4 93.1 Unkown
GreedyNAS-B [79] 324 5.2 76.8 93.0 7
MCT-NAS-B [62] 327 6.3 76.9 93.4 12
FairNAS-C [13] 325 5.6 76.7 93.3 Unkown
K-shot-NAS-B [65] 332 6.2 77.2 93.3 12
FBNetV2-L1 [72] 325 - 717.2 - 25
NSENet [14] 333 7.6 77.3 - 167
GreedyNASv2-S [36] 324 5.7 71.5 93.5 7
Cream-S [53] 287 6.0 77.6 93.3 12
GENIUS - 329 (Ours) 329 7.0 71.8 93.7 5.6
ProxylessNAS [7] 465 7.1 751 - 15
SCARLET-A [12] 365 6.7 76.9 93.4 24
GreedyNAS-A [79] 366 6.5 77.1 933 7
BossNet-M2 [44] 403 - 7.4 93.6 10
DNA-B [43] 403 49 717.5 933 8.5
EfficientNet-BO (Timm) [68, 74] 390 53 71.7 93.3 Unkown
ST-NAS-B [21] 503 7.8 71.9 93.8 Unkown
MCT-NAS-A [62] 442 8.4 78.0 93.9 12
GENIUS - 401 (Ours) 401 7.5 78.2 93.8 5.7




Ablation (training tuning)

* During neural architecture search, candidates are trained quickly;
during validation, candidate architecture are trained in a more
standard way

 This study explores two tradeoffs for quick training
resized to 128x128
Epochs 10 20 30 40 50 Input Size 224 196 160 128 96

Top-1 (%) 764 76.7 76.7 76.7 76.6 Top-1 (%) 76.7 76.9 76.7 76.5 76.2
Search\Cost 30 61 92 123 154 SearchCost 6.1 5.6 5.2 48 45

\_ Performance of the
final (retrained) model




Transfer learning

* Take a model pretrained on ImageNet and fine-tune it on CIFAR10 and
CIFAR100

* Achieved performance on-par with state-of-the-art
* Also studied transfer learning for object recognition tasks

Backbone Input Size FLOPs(M) Param(M) CIFAR-10 CIFAR-100

NASNet-A [85] 331 x 331 12030 8 98.0 86.7
EfficientNet-BO [68] 224 x 224 387 53 98.1 86.8
MixNet-M [69] 224 x 224 359 5.0 97.9 87.1
FairNas-A [13] 224 x 224 391 59 98.2 87.3
FairNas-C [13] 224 x 224 324 5.6 98.0 86.7
GENIUS - 329 (Ours) 224 x 224 329 7.0 98.2 87.3
GENIUS - 401 (Ours) 224 x 224 401 7.5 98.3 87.4




Remarks

* From all the performant designs, we can see how GPT-4 tends to
design neural networks:
* Ininitial stages, employ simpler operations fo capture low-level information
* Increase complexity progressively

* GPT-4 is a black-box optimizer which poses a few problems:

* A black-box is black, we don’t know why or how an architecture was
generated; would changing the prompt change or even invalidate the results?

* Lack of reproducability
» (Potential) Benchmark contamination

* Enfeeblement: desining networks is a crucial knowledge that we may loose by
excessively delegating to Al



Opinions & questions

 [Ablation study] the accuracy does not change
much. This show that GPT-4 does not need
precise metrics, only a sense of direction

* [Transfer learning] not a surprise. The metric
that should have been reported is fine-tuning
time

Epochs 10 20 30 40 50
Top-1(%) 76.4 176.7 76.7 76.7 76.6
Search Cost 3.0 6.1 92 123 154
Input Size 224 196 160 128 96
Top-1(%) 76.7 76.9 76.7 76.5 76.2
Search Cost 6.1 5.6 52 48 45
Backbone Input Size FLOPs(M) Param(M) CIFAR-10 CIFAR-100
NASNet-A [85] 331 x 331 12030 85 98.0 86.7
EfficientNet-BO [68] 224 x 224 387 53 98.1 86.8
MixNet-M [69] 224 x 224 359 5.0 97.9 87.1
FairNas-A [13] 224 x 224 391 59 98.2 87.3
FairNas-C [13] 224 x 224 324 56 98.0 86.7
GENIUS - 329 (Ours) 224 x 224 329 7.0 98.2 87.3
GENIUS - 401 (Ours) 224 x 224 401 75 98.3 874




Opinions & questions

* [“Lego” benchmarks]
* The first network (iteration 0) is designed without any prior feedback
* The second network (iteration 1) is designed with the performance of the first
in mind
* The jump in performance is really big

* Why not “skip” the O-th iteration by starting with a random architecture and a
nominal (fake) performance?
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Opinions & questions

 [Design process design] what’s the next step?

Ability to
rediscover
transformers




Opinions & questions

 [Design process design]
 Start with a “standard” search

* Then fine-tune the computation graph of each block starting from the start to
optimize global performance (e.g. accuracy) and local performance (e.g. class
entropy in latent space)




