Can GPT-4 Perform Neural Architecture Search?

Mingkai Zheng^{1,3} Xiu Su¹ Shan You² Fei Wang² Chen Qian² Chang Xu¹ Samuel Albanie³ ¹The University of Sydney "SenseTime Research "CAML Lab, University of Cambridge mingkai zheng@outlook.com, xisu5952@uni, sydney.edu.au, (youshan,wangfei, qianchen] senseteline.com, c. xu@ydney.edu.au

samuel.albanie.academic@gmail.com

Abstract

We investigate the potential of GPT-4 [52] to perform Neural Architecture Search (NAS)—the task of designing effective neural architectures. Our proposed ap-proach, GPT-4 Enhanced Neural archItectUre Search (GENIUS), leverages the proach, or 1-4 Ennanced Neural architectUre Search (UENUGS), leverages the generative capabilities of GPT-4 as a black-box polimiser to quickly navigate the architecture search space, pinpoint promising candidates, and iteratively refine these candidates to improve performance. We assess GENUS across several bench-marks, comparing it with existing state-of-the-art NAS techniques to illustrate its effectiveness. Rather than targeting state-of-the-art performance, our objective is to highlight GPT-4's potential to assist research on a challenging technical problem through a simple prompting scheme that requires relatively limited domain expertise.¹. More broadly, we believe our preliminary results point to future research that harnesses general purpose language models for diverse optimisation tasks. We also highlight important limitations to our study, and note implications for AI safety.

1 Introduction

2 Aug 2023

arXiv:2304.10970v4 [cs.LG]

Recent years have witnessed a string of high-profile scientific breakthroughs by applying deep neural networks to problems spanning domains such as protein folding [38], exoplanet detection [59] and drug discovery [61]. To date, however, successful applications of Al have been marked by the effective use of domain expertice to guide the design of the system, training data and development methodology.

The recent release of GPT-4 represents a milestone in the development of "general purpose" systems that exhibit a broad range of capabilities. While the full extent of these capabilities remains unknown, preliminary studies and simulated human examinations indicate that the model's knowledge spans many scientific domains [52, 6]. It is therefore of interest to consider the potential for GPT-4 to serve as a general-purpose research tool that substantially reduces the need for domain expertise prevalent in previous breakthroughs.

In this work, we investigate the feasibility of using GPT-4 without domain-specific fine-tuning to assist with a research task that has received considerable attention in the machine learning community: deep neural network design. Deep neural networks have proven effective on a diverse array of language and perception tasks, spanning domains such as question answering [56], object recognition [16, 40] and perception itses, spanning oumans such as question answering [59], object recognition [16, 40]. In and object detection [19, 46]. In the quest to improve performance, novel neural architecture designs, exemplified by proposals such as ResNets [23] and Transformers [71], have attained substantial gains in performance. Consequently, there has been significant interest in developing techniques that yield further improvements to neural network architectures. In particular, Neural Architecture

¹Code available at https://github.com/mingkai-zheng/GENIUS.

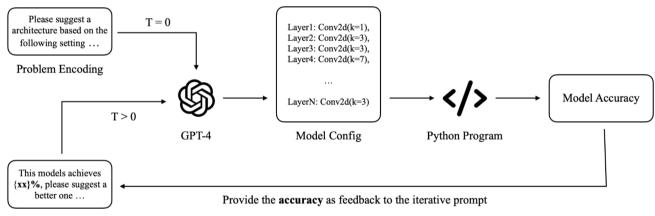
Preprint. Under review.

September 14th, 2023

In a nutshell

- What is the best neural network architecture for a given task?
- Usually an expensive search
 - Grid search, evolutionary strategy, Bayesian optimization, Hyperband
 - Differentiable Architecture Search (DARTS) arXiv:1806.09055
 - EfficientNAS arXiv:1807.06906
- This paper uses GPT-4 as a black-box optimizer in a query-feedback loop

Optimization loop



Iterative Prompt

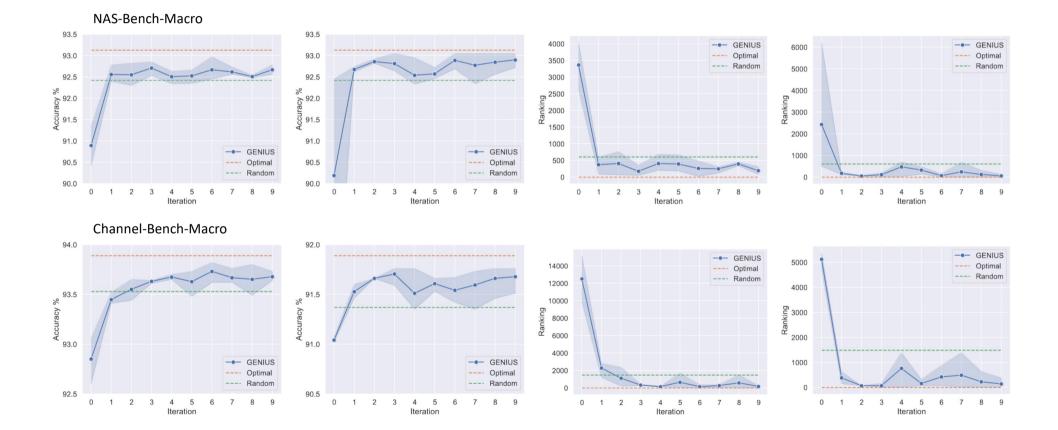
"Lego" benchmarks

- NAS-Bench-Macro
 - Contains the performance of various networks on CIFAR-10
 - Each network has the same overall structure but some blocks vary
 - Search space: $3^8 = 6561$ possibilities
- Channel-Bench-Macro
 - Same idea, $4^7 = 16348$ possibilities

Table 6. Macro structure of search space on NAS-Bench-Macro.

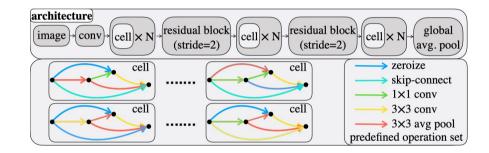
uere el muere su detare el seuren space en rurs Denen muere									
input	block	channel	stride						
32 imes 32 imes 3	3×3 conv	32	1						
32 imes 32 imes 32	Choice Block	64	2						
$16\times 16\times 64$	Choice Block	128	2						
$8\times8\times128$	Choice Block	256	2						
$4\times 4\times 256$	$1 \times 1 \text{ conv}$	1280	1						
$4\times 4\times 1280$	global avgpool	-	-						
1280	FC	10	-						
	$\begin{array}{c} \text{input} \\ 32 \times 32 \times 3 \\ 32 \times 32 \times 32 \\ 16 \times 16 \times 64 \\ 8 \times 8 \times 128 \\ 4 \times 4 \times 256 \\ 4 \times 4 \times 1280 \end{array}$	inputblock $32 \times 32 \times 3$ 3×3 conv $32 \times 32 \times 32$ Choice Block $16 \times 16 \times 64$ Choice Block $8 \times 8 \times 128$ Choice Block $4 \times 4 \times 256$ 1×1 conv $4 \times 4 \times 1280$ global avgpool	inputblockchannel $32 \times 32 \times 3$ $3 \times 3 \operatorname{conv}$ 32 $32 \times 32 \times 32$ Choice Block 64 $16 \times 16 \times 64$ Choice Block 128 $8 \times 8 \times 128$ Choice Block 256 $4 \times 4 \times 256$ $1 \times 1 \operatorname{conv}$ 1280 $4 \times 4 \times 1280$ global avgpool-						

"Lego" benchmarks



NAS-Bench-201

- Focus on designing (rather than choosing) cells via their computation graph
- Search space: $5^6 = 15625$ possibilities
- Good results but beaten by state-of-the-art (DARTS)



Method		AR10		R100_	ImageNet16-120		
Method	Validation	Test	Validation	Test	Validation	Test	
DARTS [47]	39.77±0.00	54.30±0.00	38.57±0.00	15.61±0.00	18.87±0.00	16.32±0.00	
DSNAS [32]	89.66±0.29	93.08±0.13	30.87±16.40	31.01±16.38	40.61±0.09	41.07±0.09	
PC-DARTS [77]	89.96±0.15	93.41±0.30	67.12±0.39	67.48±0.89	40.83±0.08	41.31±0.22	
SNAS [76]	90.10±1.04	92.77±0.83	69.69±2.39	69.34±1.98	42.84±1.79	43.16±2.64	
iDARTS [82]	89.86±0.60	93.58±0.32	70.57±0.24	70.83±0.48	40.38±0.59	40.89±0.68	
GDAS [17]	89.89±0.08	93.61±0.09	71.34±0.04	70.70±0.30	41.59±1.33	41.71±0.98	
DRNAŠ [10]	91.55±0.00	94.36±0.00	73.49±0.00	73.51±0.00	46.37±0.00	46.34±0.00	
β -DARTS [78]	91.55±0.00	94.36±0.00	73.49±0.00	73.51±0.00	46.37±0.00	46.34±0.00	
Λ -DARTS [51]	91.55±0.00	94.36±0.00	73.49±0.00	73.51±0.00	46.37±0.00	46.34±0.00	
GENIUS (Ours)	91.07±0.20	93.79±0.09	70.96±0.33	70.91±0.72	45.29±0.81	44.96±1.02	

Large-scale experiments

- Lego-type benchmark on ImageNet with more layer options
- Search space: $7^{30} \approx 2.2 \times 10^{25}$ possibilities
- FLOPs constraints
- Marginally better results, but significantly faster

Method	FLOPs (M)	Params (M)	Top-1 (%)	Top-5 (%)	Search Cost (GPU Days)
MobileNetV2 [58]	300	3.4	72.0	91.0	Human Designed
AngleNet [33]	325	-	74.2	-	Unkown
Proxyless-R [7]	320	4.0	74.6	92.2	15
MnasNet-A2 [67]	340	4.8	75.6	92.7	288†
BetaNet-A [20]	333	4.1	75.9	92.8	7
SPOS [22]	328	-	76.2	-	12
SCARLET-B [12]	329	6.5	76.3	93.0	22
ST-NAS-A [21]	326	5.2	76.4	93.1	Unkown
GreedyNAS-B [79]	324	5.2	76.8	93.0	7
MCT-NAS-B [62]	327	6.3	76.9	93.4	12
FairNAS-C [13]	325	5.6	76.7	93.3	Unkown
K-shot-NAS-B [65]	332	6.2	77.2	93.3	12
FBNetV2-L1 [72]	325	-	77.2	-	25
NSENet [14]	333	7.6	77.3	-	167
GreedyNASv2-S [36]	324	5.7	77.5	93.5	7
Cream-S [53]	287	6.0	77.6	93.3	12
GENIUS - 329 (Ours)	329	7.0	77.8	93.7	5.6
ProxylessNAS [7]	465	7.1	75.1	-	15
SCARLET-A [12]	365	6.7	76.9	93.4	24
GreedyNAS-A [79]	366	6.5	77.1	93.3	7
BossNet-M2 [44]	403	-	77.4	93.6	10
DNA-B [43]	403	4.9	77.5	93.3	8.5
EfficientNet-B0 (Timm) [68, 74]	390	5.3	77.7	93.3	Unkown
ST-NAS-B [21]	503	7.8	77.9	93.8	Unkown
MCT-NAS-A [62]	442	8.4	78.0	93.9	12
GENIUS - 401 (Ours)	401	7.5	78.2	93.8	5.7

Ablation (training tuning)

- During neural architecture search, candidates are trained quickly; during validation, candidate architecture are trained in a more standard way
- This study explores two tradeoffs for quick training

										/		the image is ized to 128x128
Epochs	10	20	30	40	50	Input Size	224	196	160	128	96	
Top-1 (%) Search Cost	76.4 3.0	76.7 6.1	76.7 9.2	76.7 12.3	76.6 15.4	Top-1 (%) Search Cost	76.7 6.1	76.9 5.6	76.7 5.2	76.5 4.8	76.2 4.5	-
	Performanc final (retraiı											-

Transfer learning

- Take a model pretrained on ImageNet and fine-tune it on CIFAR10 and CIFAR100
- Achieved performance on-par with state-of-the-art
- Also studied transfer learning for object recognition tasks

Backbone	Input Size	FLOPs(M)	Param(M)	CIFAR-10	CIFAR-100
NASNet-A [85]	$\begin{array}{c} 331 \times 331 \\ 224 \times 224 \end{array}$	12030	85	98.0	86.7
EfficientNet-B0 [68]		387	5.3	98.1	86.8
MixNet-M [69]		359	5.0	97.9	87.1
FairNas-A [13]		391	5.9	98.2	87.3
FairNas-C [13]		324	5.6	98.0	86.7
GENIUS - 329 (Ours)	$\begin{array}{c} 224 \times 224 \\ 224 \times 224 \end{array}$	329	7.0	98.2	87.3
GENIUS - 401 (Ours)		401	7.5	98.3	87.4

Remarks

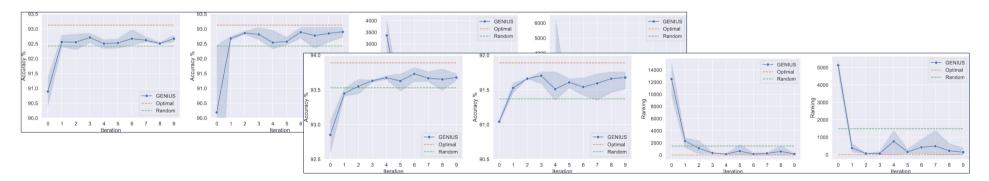
- From all the performant designs, we can see how GPT-4 tends to design neural networks:
 - In initial stages, employ simpler operations fo capture low-level information
 - Increase complexity progressively
- GPT-4 is a black-box optimizer which poses a few problems:
 - A black-box is black, we don't know *why or how* an architecture was generated; would changing the prompt change or even invalidate the results?
 - Lack of reproducability
 - (Potential) Benchmark contamination
 - *Enfeeblement*: desining networks is a crucial knowledge that we may loose by excessively delegating to Al

- [Ablation study] the accuracy does not change much. This show that GPT-4 does not need precise metrics, only a sense of direction
- [Transfer learning] not a surprise. The metric that should have been reported is fine-tuning time

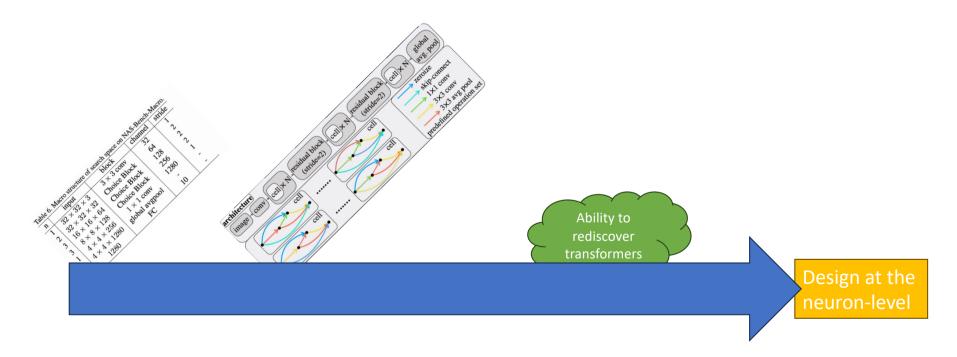
Epochs	10	20	30	40	50
Top-1 (%)	76.4	76.7	76.7	76.7	76.6
Search Cost	3.0	6.1	9.2	12.3	15.4
Input Size	224	196	160	128	96
Top-1 (%)	76.7	76.9	76.7	76.5	76.2
Search Cost	6.1	5.6	5.2	4.8	4.5

Backbone	Input Size	FLOPs(M)	Param(M)	CIFAR-10	CIFAR-100
NASNet-A [85] EfficientNet-B0 [68]	331×331 224×224 224×224	12030 387 359	85 5.3 5.0	98.0 98.1 97.9	86.7 86.8 87.1
MixNet-M [69] FairNas-A [13] FairNas-C [13]	224×224 224×224 224×224 224×224	391 324	5.0 5.9 5.6	97.9 98.2 98.0	87.3 86.7
GENIUS - 329 (Ours) GENIUS - 401 (Ours)	$\begin{array}{c} 224 \times 224 \\ 224 \times 224 \end{array}$	329 401	7.0 7.5	98.2 98.3	87.3 87.4

- ["Lego" benchmarks]
 - The first network (iteration 0) is designed without any prior feedback
 - The second network (iteration 1) is designed with the performance of the first in mind
 - The jump in performance is really big
 - Why not "skip" the 0-th iteration by starting with a random architecture and a nominal (fake) performance?



• [Design process design] what's the next step?



- [Design process design]
 - Start with a "standard" search
 - Then fine-tune the computation graph of each block starting from the start to optimize global performance (e.g. accuracy) and *local performance* (e.g. class entropy in latent space)

